References

  1. F.G. Martins, A. Melo, S.F. Sousa, Databases for the study of biofilms: current status and potential applications, Biofouling, 37 (2021) 96–108.
  2. B.P. Singh, S. Ghosh, A. Chauhan, Development, dynamics and control of antimicrobial-resistant bacterial biofilms: a review, Environ. Chem. Lett., 19 (2021) 1983–1993.
  3. L.D. Blackman, Y. Qu, P. Cass, K.E.S. Locock, Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents, Chem. Soc. Rev., 50 (2021) 1587–1616.
  4. J. Caro-Astorga, E. Frenzel, J.R. Perkins, A. Álvarez-Mena, A. de Vicente, J.A.G. Ranea, O.P. Kuipers, D. Romero, Biofilm formation displays intrinsic offensive and defensive features of Bacillus cereus, npj Biofilms Microbiomes, 6 (2020), doi: 10.1038/ s41522-019-0112-7.
  5. M. Jamal, W. Ahmad, S. Andleeb, F. Jalil, M. Imran, M. Asif Nawaz, T. Hussain, M. Ali, M. Rafiq, M. Atif Kamil, Bacterial biofilm and associated infections, J. Chin. Med. Assoc., 81 (2018) 7–11, doi: 10.1016/j.jcma.2017.07.012.
  6. Q. Liu, J. Wang, R. He, H. Hu, B. Wu, H. Ren, Bacterial assembly during the initial adhesion phase in wastewater treatment biofilms, Water Res., 184 (2020) 116147, doi: 10.1016/j. watres.2020.116147.
  7. K. Liu, P. He, H. Bai, J. Chen, F. Dong, S. Wang, M. He, S. Yuan, Effects of dodecyltrimethylammonium bromide surfactant on both corrosion and passivation behaviors of zinc electrodes in alkaline solution, Mater. Chem. Phys., 199 (2017) 73–78.
  8. J. Dong, Y. Wang, L. Wang, S. Wang, S. Li, Y. Ding, The performance of porous ceramsites in a biological aerated filter for organic wastewater treatment and simulation analysis, J. Water Process Eng., 34 (2020) 101134, doi: 10.1016/j. jwpe.2020.101134.
  9. R. Farber, I. Dabush-Busheri, G. Chaniel, S. Rozenfeld, E. Bormashenko, V. Multanen, R. Cahan, Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: utilization for toluene remediation, Int. Biodeterior. Biodegrad., 139 (2019) 62–69.
  10. A. Gran-Scheuch, E. Fuentes, D.M. Bravo, J.C. Jiménez, J.M. Pérez-Donoso, Isolation and characterization of phenanthrene degrading bacteria from diesel fuel-contaminated Antarctic soils, Front. Microbiol., 8 (2017) 1634, doi: 10.3389/fmicb.2017.01634.
  11. V. Vishwakarma, Impact of environmental biofilms: industrial components and its remediation, J. Basic Microbiol., 60 (2020) 198–206.
  12. H.F.S. Gafri, F.M. Zuki, M.K. Aroua, N.A. Hashim, Mechanism of bacterial adhesion on ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) and combination with activated carbon (PAC), Rev. Chem. Eng., 35 (2019) 421–443.
  13. H.F. Gafri, F.M. Zuki, M.K. Aroua, M.M. Bello, Enhancing the anti-biofouling properties of polyethersulfone membrane using chitosan-powder activated carbon composite, J. Polym. Environ., 27 (2019) 2156–2166.
  14. T. Roger Garrett, M. Bhakoo, Z. Zhang, Bacterial adhesion and biofilms on surfaces, Prog. Nat. Sci., 18 (2008) 1049–1056.
  15. M.E. Cortés, J.C. Bonilla, R.D. Sinisterra, Biofilm formation, control and novel strategies for eradication, Sci. Against Microbiol. Pathog. Commun. Curr. Res. Technol. Adv., 2 (2011) 896–905.
  16. D.J. Davidson, D. Spratt, A.D. Liddle, Implant materials and prosthetic joint infection: the battle with the biofilm, EFORT Open Rev., 4 (2019) 633–639.
  17. C.E. Foster, M. Kok, A.R. Flores, C.G. Minard, R.A. Luna, L.B. Lamberth, S.L. Kaplan, K.G. Hulten, Adhesin genes and biofilm formation among pediatric Staphylococcus aureus isolates from implant-associated infections, PLoS One, 15 (2020) e0235115, doi: 10.1371/journal.pone.0235115.
  18. K. Hori, S. Matsumoto, Bacterial adhesion: from mechanism to control, Biochem. Eng. J., 48 (2010) 424–434.
  19. A. Blazyte, A.B. Alayande, T.-T. Nguyen, R.S. Adha, J. Jang, M.M. Aung, I.S. Kim, Effect of size fractioned alginate-based transparent exopolymer particles on initial bacterial adhesion of forward osmosis membrane support layer, J. Ind. Eng. Chem., 94 (2021) 408–418.
  20. J. Chen, Y. Shi, D. Cheng, Y. Jin, W. Hutchins, J. Liu, Survey of pathogenic bacteria of biofilms in a metropolitan drinking water distribution system, FEMS Microbiol. Lett., 366 (2019) fnz225, doi: 10.1093/femsle/fnz225.
  21. X. Wu, J. Pan, M. Li, Y. Li, M. Bartlam, Y. Wang, Selective enrichment of bacterial pathogens by microplastic biofilm, Water Res., 165 (2019) 114979, doi: 10.1016/j.watres.2019.114979.
  22. M. Fernández, M. Porcel, J. de la Torre, M.A. Molina-Henares, A. Daddaoua, M.A. Llamas, A. Roca, V. Carriel,
    I. Garzón, J.L. Ramos, M. Alaminos, E. Duque, Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains, Front. Microbiol., 6 (2015) 871, doi: 10.3389/fmicb.2015.00871.
  23. H. Liu, S. Li, X. Xie, Q. Shi, Pseudomonas putida actively forms biofilms to protect the population under antibiotic stress, Environ. Pollut., 270 (2021) 116261, doi: 10.1016/j. envpol.2020.116261.
  24. F. Mohamed Zuki, R.G.J. Edyvean, H. Pourzolfaghar, N. Kasim, Modeling of the van der Waals forces during the adhesion of capsule-shaped bacteria to flat surfaces, Biomimetics, 6 (2021) 5, doi:10.3390/biomimetics6010005.
  25. H. Wu, D. Jiang, P. Cai, X. Rong, K. Dai, W. Liang, Q. Huang, Adsorption of Pseudomonas putida on soil particle size fractions: effects of solution chemistry and organic matter, J. Soils Sediments, 12 (2012) 143–149.
  26. E.V. Shein, N.V. Verkhovtseva, E.Y. Milanovsky, A.A. Romanycheva, Microbiological modification of kaolinite and montmorillonite surface: changes in physical and chemical parameters (model experiment), Biogeosystem Tech., 9 (2016) 229–234.
  27. L. Krause, D. Biesgen, A. Treder, S.A. Schweizer, E. Klumpp, C. Knief, N. Siebers, Initial microaggregate formation: association of microorganisms to montmorillonite-goethite aggregates under wetting and drying cycles, Geoderma, 351 (2019) 250–260.
  28. A. Putnis, R. Hinrichs, C.V. Putnis, U. Golla-Schindler, L.G. Collins, Hematite in porous red-clouded feldspars: evidence of largescale crustal fluid–rock interaction, Lithos, 95 (2007) 10–18.
  29. X. Wang, B. Liu, X. Pan, G.M. Gadd, Transport and retention of biogenic selenium nanoparticles
    in biofilm-coated quartz sand porous media and consequence for elemental mercury immobilization, Sci. Total Environ., 692 (2019) 1116–1124.
  30. T.H. Ong, E. Chitra, S. Ramamurthy, C.C.S. Ling, S.P. Ambu, F. Davamani, Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics, PLoS One, 14 (2019) e0213079,
    doi: 10.1371/journal. pone.0213079.
  31. S. Ramezaniankeikanloo, Multiscale Investigations of the Effects of Chemical Stimuli on the Composition, Adhesion and Mechanics of Pseudomonas putida Cells and Biofilms, Ph.D. Thesis, Washington State University, ProQuest Dissertations Publishing, 2018.
  32. J.-Z. He, D.-J. Wang, H. Fang, Q.-L. Fu, D.-M. Zhou, Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms, Chemosphere, 169 (2017) 1–8, doi: 10.1016/j. chemosphere.2016.11.040.
  33. M. Farahat, T. Hirajima, K. Sasaki, K. Doi, Adhesion of Escherichia coli onto quartz, hematite and corundum: extended DLVO theory and flotation behavior, Colloids Surf., B, 74 (2009) 140–149.
  34. A.R. Shashikala, A.M. Raichur, Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz, Colloids Surf., B, 24 (2002) 11–20.
  35. M.Z. Fathiah, R.G. Edyvean, The role of ionic strength and mineral size to zeta potential for the adhesion of
    P. putida to mineral surfaces, World Acad. Sci. Eng. Technol., Int. J. Biotechnol. Bioeng., 9 (2015) 805–810.
  36. C.R. Bunt, D.S. Jones, I.G. Tucker, The effects of pH, ionic strength and polyvalent ions on the cell surface hydrophobicity of Escherichia coli evaluated by the BATH and HIC methods, Int. J. Pharm., 113 (1995) 257–261.
  37. R.M. Goulter, I.R. Gentle, G.A. Dykes, Issues in determining factors influencing bacterial attachment: a review using the attachment of Escherichia coli to abiotic surfaces as an example, Lett. Appl. Microbiol., 49 (2009) 1–7, doi: 10.1111/j.1472-765X.2009.02591.x.
  38. A. Krasowska, K. Sigler, How microorganisms use hydrophobicity and what does this mean for human needs?, Front. Cell. Infect. Microbiol., 4 (2014) 112, doi: 10.3389/ fcimb.2014.00112.
  39. C. Desrousseaux, V. Sautou, S. Descamps, O. Traoré, Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation, J. Hosp. Infect., 85 (2013) 87–93.
  40. Y. Liu, S.-F. Yang, Y. Li, H. Xu, L. Qin, J.-H. Tay, The influence of cell and substratum surface hydrophobicities on microbial attachment, J. Biotechnol., 110 (2004) 251–256.
  41. G. Hwang, C.-H. Lee, I.-S. Ahn, B.J. Mhin, Analysis of the adhesion of Pseudomonas putida NCIB 9816-4 to a silica gel as a model soil using extended DLVO theory, J. Hazard. Mater., 179 (2010) 983–988.
  42. D. Yongabi, S. Jooken, S. Givanoudi, M. Khorshid, O. Deschaume, C. Bartic, P. Losada-Pérez, M. Wübbenhorst,
    P. Wagner, Ionic strength controls long-term cell-surface interactions – a QCM-D study of S. cerevisiae adhesion, retention and detachment, J. Colloid Interface Sci., 585 (2021) 583–595.
  43. G. Hurwitz, G.R. Guillen, E.M.V. Hoek, Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements, J. Membr. Sci., 349 (2010) 349–357.
  44. G. Chen, S.L. Walker, Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria, Langmuir, 23 (2007) 7162–7169.
  45. Y. Liu, Q. Zhao, Influence of surface energy of modified surfaces on bacterial adhesion, Biophys. Chem., 117 (2005) 39–45.
  46. M. Katsikogianni, Y.F. Missirlis, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions, Eur. Cell Mater, 8 (2004) 37–57.
  47. M. Kosmulski, E. Maczka, E. Jartych, J.B. Rosenholm, Synthesis and characterization of goethite and goethite–hematite composite: experimental study and literature survey, Adv. Colloid Interface Sci., 103 (2003) 57–76.
  48. A.T. Poortinga, R. Bos, W. Norde, H.J. Busscher, Electric double layer interactions in bacterial adhesion to surfaces, Surf. Sci. Rep., 47 (2002) 1–32.
  49. P.K. Sharma, K. Hanumantha Rao, Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory, Colloids Surf., B, 29 (2003) 21–38.
  50. L.M.S. de Mesquita, F.F. Lins, M.L. Torem, Interaction of a hydrophobic bacterium strain in a hematite-quartz flotation system, Int. J. Miner. Process., 71 (2003) 31–44.
  51. Y.-L. Ong, A. Razatos, G. Georgiou, M.M. Sharma, Adhesion forces between E. coli bacteria and biomaterial surfaces, Langmuir, 15 (1999) 2719–2725.
  52. C.J. van Oss, Hydrophobicity of biosurfaces — origin, quantitative determination and interaction energies, Colloids Surf., B, 5 (1995) 91–110.