References
- F.G. Martins, A. Melo, S.F. Sousa, Databases for the study of
biofilms: current status and potential applications, Biofouling,
37 (2021) 96–108.
- B.P. Singh, S. Ghosh, A. Chauhan, Development, dynamics and
control of antimicrobial-resistant bacterial biofilms: a review,
Environ. Chem. Lett., 19 (2021) 1983–1993.
- L.D. Blackman, Y. Qu, P. Cass, K.E.S. Locock, Approaches for
the inhibition and elimination of microbial biofilms using
macromolecular agents, Chem. Soc. Rev., 50 (2021) 1587–1616.
- J. Caro-Astorga, E. Frenzel, J.R. Perkins, A. Álvarez-Mena,
A. de Vicente, J.A.G. Ranea, O.P. Kuipers, D. Romero, Biofilm
formation displays intrinsic offensive and defensive features of
Bacillus cereus, npj Biofilms Microbiomes, 6 (2020), doi: 10.1038/
s41522-019-0112-7.
- M. Jamal, W. Ahmad, S. Andleeb, F. Jalil, M. Imran,
M. Asif Nawaz, T. Hussain, M. Ali, M. Rafiq, M. Atif Kamil,
Bacterial biofilm and associated infections, J. Chin. Med. Assoc.,
81 (2018) 7–11, doi: 10.1016/j.jcma.2017.07.012.
- Q. Liu, J. Wang, R. He, H. Hu, B. Wu, H. Ren, Bacterial
assembly during the initial adhesion phase in wastewater
treatment biofilms, Water Res., 184 (2020) 116147, doi: 10.1016/j.
watres.2020.116147.
- K. Liu, P. He, H. Bai, J. Chen, F. Dong, S. Wang, M. He, S. Yuan,
Effects of dodecyltrimethylammonium bromide surfactant on
both corrosion and passivation behaviors of zinc electrodes
in alkaline solution, Mater. Chem. Phys., 199 (2017) 73–78.
- J. Dong, Y. Wang, L. Wang, S. Wang, S. Li, Y. Ding,
The performance of porous ceramsites in a biological aerated
filter for organic wastewater treatment and simulation
analysis, J. Water Process Eng., 34 (2020) 101134, doi: 10.1016/j.
jwpe.2020.101134.
- R. Farber, I. Dabush-Busheri, G. Chaniel, S. Rozenfeld,
E. Bormashenko, V. Multanen, R. Cahan, Biofilm grown on
wood waste pretreated with cold low-pressure nitrogen
plasma: utilization for toluene remediation, Int. Biodeterior.
Biodegrad., 139 (2019) 62–69.
- A. Gran-Scheuch, E. Fuentes, D.M. Bravo, J.C. Jiménez,
J.M. Pérez-Donoso, Isolation and characterization of
phenanthrene degrading bacteria from diesel fuel-contaminated
Antarctic soils, Front. Microbiol., 8 (2017) 1634, doi: 10.3389/fmicb.2017.01634.
- V. Vishwakarma, Impact of environmental biofilms: industrial
components and its remediation, J. Basic Microbiol., 60 (2020)
198–206.
- H.F.S. Gafri, F.M. Zuki, M.K. Aroua, N.A. Hashim, Mechanism
of bacterial adhesion on ultrafiltration membrane modified by
natural antimicrobial polymers (chitosan) and combination
with activated carbon (PAC), Rev. Chem. Eng., 35 (2019)
421–443.
- H.F. Gafri, F.M. Zuki, M.K. Aroua, M.M. Bello, Enhancing
the anti-biofouling properties of polyethersulfone membrane
using chitosan-powder activated carbon composite, J. Polym.
Environ., 27 (2019) 2156–2166.
- T. Roger Garrett, M. Bhakoo, Z. Zhang, Bacterial adhesion and
biofilms on surfaces, Prog. Nat. Sci., 18 (2008) 1049–1056.
- M.E. Cortés, J.C. Bonilla, R.D. Sinisterra, Biofilm formation,
control and novel strategies for eradication, Sci. Against
Microbiol. Pathog. Commun. Curr. Res. Technol. Adv., 2 (2011)
896–905.
- D.J. Davidson, D. Spratt, A.D. Liddle, Implant materials and
prosthetic joint infection: the battle with the biofilm, EFORT
Open Rev., 4 (2019) 633–639.
- C.E. Foster, M. Kok, A.R. Flores, C.G. Minard, R.A. Luna,
L.B. Lamberth, S.L. Kaplan, K.G. Hulten, Adhesin genes
and biofilm formation among pediatric Staphylococcus aureus isolates from implant-associated infections, PLoS One, 15 (2020)
e0235115, doi: 10.1371/journal.pone.0235115.
- K. Hori, S. Matsumoto, Bacterial adhesion: from mechanism to
control, Biochem. Eng. J., 48 (2010) 424–434.
- A. Blazyte, A.B. Alayande, T.-T. Nguyen, R.S. Adha, J. Jang,
M.M. Aung, I.S. Kim, Effect of size fractioned alginate-based
transparent exopolymer particles on initial bacterial adhesion of
forward osmosis membrane support layer, J. Ind. Eng. Chem.,
94 (2021) 408–418.
- J. Chen, Y. Shi, D. Cheng, Y. Jin, W. Hutchins, J. Liu, Survey
of pathogenic bacteria of biofilms in a metropolitan drinking
water distribution system, FEMS Microbiol. Lett., 366 (2019)
fnz225, doi: 10.1093/femsle/fnz225.
- X. Wu, J. Pan, M. Li, Y. Li, M. Bartlam, Y. Wang, Selective
enrichment of bacterial pathogens by microplastic biofilm,
Water Res., 165 (2019) 114979, doi: 10.1016/j.watres.2019.114979.
- M. Fernández, M. Porcel, J. de la Torre, M.A. Molina-Henares,
A. Daddaoua, M.A. Llamas, A. Roca, V. Carriel,
I. Garzón,
J.L. Ramos, M. Alaminos, E. Duque, Analysis of the pathogenic
potential of nosocomial Pseudomonas putida strains, Front.
Microbiol., 6 (2015) 871, doi: 10.3389/fmicb.2015.00871.
- H. Liu, S. Li, X. Xie, Q. Shi, Pseudomonas putida actively
forms biofilms to protect the population under antibiotic
stress, Environ. Pollut., 270 (2021) 116261, doi: 10.1016/j.
envpol.2020.116261.
- F. Mohamed Zuki, R.G.J. Edyvean, H. Pourzolfaghar, N. Kasim,
Modeling of the van der Waals forces during the adhesion of
capsule-shaped bacteria to flat surfaces, Biomimetics, 6 (2021) 5,
doi:10.3390/biomimetics6010005.
- H. Wu, D. Jiang, P. Cai, X. Rong, K. Dai, W. Liang, Q. Huang,
Adsorption of Pseudomonas putida on soil particle size fractions:
effects of solution chemistry and organic matter, J. Soils
Sediments, 12 (2012) 143–149.
- E.V. Shein, N.V. Verkhovtseva, E.Y. Milanovsky,
A.A. Romanycheva, Microbiological modification of kaolinite
and montmorillonite surface: changes in physical and chemical
parameters (model experiment), Biogeosystem Tech., 9 (2016)
229–234.
- L. Krause, D. Biesgen, A. Treder, S.A. Schweizer, E. Klumpp,
C. Knief, N. Siebers, Initial microaggregate formation:
association of microorganisms to montmorillonite-goethite
aggregates under wetting and drying cycles, Geoderma,
351 (2019) 250–260.
- A. Putnis, R. Hinrichs, C.V. Putnis, U. Golla-Schindler, L.G. Collins,
Hematite in porous red-clouded feldspars: evidence of largescale
crustal fluid–rock interaction, Lithos, 95 (2007) 10–18.
- X. Wang, B. Liu, X. Pan, G.M. Gadd, Transport and retention
of biogenic selenium nanoparticles
in biofilm-coated quartz
sand porous media and consequence for elemental mercury
immobilization, Sci. Total Environ., 692 (2019) 1116–1124.
- T.H. Ong, E. Chitra, S. Ramamurthy, C.C.S. Ling, S.P. Ambu,
F. Davamani, Cationic chitosan-propolis nanoparticles alter
the zeta potential of S. epidermidis, inhibit biofilm formation
by modulating gene expression and exhibit synergism with
antibiotics, PLoS One, 14 (2019) e0213079,
doi: 10.1371/journal.
pone.0213079.
- S. Ramezaniankeikanloo, Multiscale Investigations of the
Effects of Chemical Stimuli on the Composition, Adhesion
and Mechanics of Pseudomonas putida Cells and Biofilms, Ph.D.
Thesis, Washington State University, ProQuest Dissertations
Publishing, 2018.
- J.-Z. He, D.-J. Wang, H. Fang, Q.-L. Fu, D.-M. Zhou, Inhibited
transport of graphene oxide nanoparticles in granular
quartz sand coated with Bacillus subtilis and Pseudomonas
putida biofilms, Chemosphere, 169 (2017) 1–8, doi: 10.1016/j.
chemosphere.2016.11.040.
- M. Farahat, T. Hirajima, K. Sasaki, K. Doi, Adhesion of
Escherichia coli onto quartz, hematite and corundum: extended
DLVO theory and flotation behavior, Colloids Surf., B, 74 (2009)
140–149.
- A.R. Shashikala, A.M. Raichur, Role of interfacial phenomena in
determining adsorption of Bacillus polymyxa onto hematite and
quartz, Colloids Surf., B, 24 (2002) 11–20.
- M.Z. Fathiah, R.G. Edyvean, The role of ionic strength and
mineral size to zeta potential for the adhesion of
P. putida to mineral surfaces, World Acad. Sci. Eng. Technol., Int. J.
Biotechnol. Bioeng., 9 (2015) 805–810.
- C.R. Bunt, D.S. Jones, I.G. Tucker, The effects of pH, ionic
strength and polyvalent ions on the cell surface hydrophobicity
of Escherichia coli evaluated by the BATH and HIC methods,
Int. J. Pharm., 113 (1995) 257–261.
- R.M. Goulter, I.R. Gentle, G.A. Dykes, Issues in determining
factors influencing bacterial attachment: a review using
the attachment of Escherichia coli to abiotic surfaces
as an example, Lett. Appl. Microbiol., 49 (2009) 1–7,
doi: 10.1111/j.1472-765X.2009.02591.x.
- A. Krasowska, K. Sigler, How microorganisms use
hydrophobicity and what does this mean for human needs?,
Front. Cell. Infect. Microbiol., 4 (2014) 112, doi: 10.3389/
fcimb.2014.00112.
- C. Desrousseaux, V. Sautou, S. Descamps, O. Traoré,
Modification of the surfaces of medical devices to prevent
microbial adhesion and biofilm formation, J. Hosp. Infect.,
85 (2013) 87–93.
- Y. Liu, S.-F. Yang, Y. Li, H. Xu, L. Qin, J.-H. Tay, The influence
of cell and substratum surface hydrophobicities on microbial
attachment, J. Biotechnol., 110 (2004) 251–256.
- G. Hwang, C.-H. Lee, I.-S. Ahn, B.J. Mhin, Analysis of the
adhesion of Pseudomonas putida NCIB 9816-4 to a silica gel as
a model soil using extended DLVO theory, J. Hazard. Mater.,
179 (2010) 983–988.
- D. Yongabi, S. Jooken, S. Givanoudi, M. Khorshid, O. Deschaume,
C. Bartic, P. Losada-Pérez, M. Wübbenhorst,
P. Wagner, Ionic
strength controls long-term cell-surface interactions – a QCM-D
study of S. cerevisiae adhesion, retention and detachment,
J. Colloid Interface Sci., 585 (2021) 583–595.
- G. Hurwitz, G.R. Guillen, E.M.V. Hoek, Probing polyamide
membrane surface charge, zeta potential, wettability, and
hydrophilicity with contact angle measurements, J. Membr. Sci.,
349 (2010) 349–357.
- G. Chen, S.L. Walker, Role of solution chemistry and ion valence
on the adhesion kinetics of groundwater and marine bacteria,
Langmuir, 23 (2007) 7162–7169.
- Y. Liu, Q. Zhao, Influence of surface energy of modified surfaces
on bacterial adhesion, Biophys. Chem., 117 (2005) 39–45.
- M. Katsikogianni, Y.F. Missirlis, Concise review of mechanisms
of bacterial adhesion to biomaterials and of techniques used
in estimating bacteria-material interactions, Eur. Cell Mater,
8 (2004) 37–57.
- M. Kosmulski, E. Maczka, E. Jartych, J.B. Rosenholm, Synthesis
and characterization of goethite and goethite–hematite
composite: experimental study and literature survey, Adv.
Colloid Interface Sci., 103 (2003) 57–76.
- A.T. Poortinga, R. Bos, W. Norde, H.J. Busscher, Electric double
layer interactions in bacterial adhesion to surfaces, Surf. Sci.
Rep., 47 (2002) 1–32.
- P.K. Sharma, K. Hanumantha Rao, Adhesion of Paenibacillus
polymyxa on chalcopyrite and pyrite: surface thermodynamics
and extended DLVO theory, Colloids Surf., B, 29 (2003) 21–38.
- L.M.S. de Mesquita, F.F. Lins, M.L. Torem, Interaction of a
hydrophobic bacterium strain in a hematite-quartz flotation
system, Int. J. Miner. Process., 71 (2003) 31–44.
- Y.-L. Ong, A. Razatos, G. Georgiou, M.M. Sharma, Adhesion
forces between E. coli bacteria and biomaterial surfaces,
Langmuir, 15 (1999) 2719–2725.
- C.J. van Oss, Hydrophobicity of biosurfaces — origin,
quantitative determination and interaction energies, Colloids
Surf., B, 5 (1995) 91–110.