References

  1. UNESCO, World Water Assessment Programme, The United Nations World Water Development, Water and Climate Change, The United Nations Educational, Scientific and Cultural Organization, 2020.
  2. A. Gómez-Gutiérrez, M.J. Miralles, I. Corbella, S. García, S. Navarro, X. Llebaria, Drinking water quality and safety, Gac. Sanit., 30 (2015) 63–68.
  3. E. Pérez-López, Quality control of water for human consumption in the region of the West in Costa Rica, Tec. en Marcha, 29 (2016) 3–14.
  4. G.I. Hernández-Contreras, M.C. Hernández-Berriel, I. de la Rosa-Gómez, M.C. Carreño-de León,
    L. Márquez-Benavides, Dynamics of fermentative and methanogenic bacteria in the accelerated degradation of municipal solid waste, J. Solid Waste Technol. Manage., 41 (2015) 573–581.
  5. S. Ríos-Tobón, R.M. Agudelo, L.A. Gutiérrez, Pathogens and microbiological indicators of water quality for human consumption, Rev. Fac. Nac. Salud Pública, 35 (2017) 236–247.
  6. G.B. Dirisu, U.C. Okonkwo, I.P. Okonkwo, S.I. Fayomi, Comparative analysis of the effectiveness of reverse osmosis and ultraviolet radiation of water treatment, J. Ecol. Eng., 20 (2019) 61–75.
  7. R.R. Veliz-Flores, E.G. Arones-Medina, Y.G. Palomino-Malpartida, R. Huincho-Rodriguez, Disinfection of secondary effluent from waste water plant in Ayacucho by UV radiation for agricultural irrigation reuse, Rev. Soc. Quim. Peru, 84 (2018) 41–56.
  8. J.L. Cerrillo, A.E. Palomares, F. Rey, Silver exchanged zeolites as bactericidal additives in polymeric materials, Microporous Mesoporous Mater., 305 (2020) 1–26.
  9. B.G. Rodríguez, R. López-Callejas, M.T. Olguín, R. Alvarado, A. Mercado-Cabrera, R. Peña-Eguiluz,
    A.E. Muñoz-Castro, Growth of Ag particles from Ag-zeolite by pulsed discharges in water and their antibacterial activity, Microporous Mesoporous Mater., 244 (2017) 235–243.
  10. A. Kędziora, M. Speruda, E. Krzyżewska, J. Rybka, A. Łukowiak, G. Bugla-Płoskońska, Similarities and differences between silver ions and silver in nanoforms as antibacterial agents, Int. J. Mol. Sci., 19 (2018) 444, doi: 10.3390/ijms19020444.
  11. S. Aparicio-Vázquez, C. Fall, M. Islas-Espinoza, D. Alcántara, V. Petranovskii, M.T. Olguín, Influence of experimental conditions to obtain silver-modified zeolite-rich tuffs on the antimicrobial activity for Escherichia coli suspended in aqueous media, Environ. Technol. Innovation, 23 (2021) 101707, doi:10.1016/j.eti.2021.101707.
  12. S.J. Park, H.H. Park, Y.S. Ko, S.J. Lee, T.S. Le, K. Woo, G.P. Ko, Disinfection of various bacterial pathogens using novel silver nanoparticle-decorated magnetic hybrid colloids, Sci. Total Environ., 609 (2017) 289–296.
  13. J. Lalley, D.D. Dionysiou, R.S. Varma, S. Shankara, D.J. Yang, M.N. Nadagouda, Silver-based antibacterial surfaces for drinking water disinfection — an overview, Curr. Opin. Chem. Eng., 3 (2014) 25–29.
  14. V.E. Gonzaga-Galeana, I. De-La-Rosa-Gómez, M.T Olguín, Silver-modified clinoptilolite-heulandite-rich tuff as microbicide agent in a column system for specific microorganisms and consortium from a deionized water suspension, Desal. Water Treat., 123 (2018) 109–118.
  15. Y. Hui Ngo, D. Li, G.P. Simon, G. Garnier, Paper surfaces functionalized by nanoparticles, Adv. Colloid Interface Sci., 163 (2011) 23–38.
  16. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42 (2008) 4591–4602.
  17. N. Jayaprakash, V.J. Judith, J.L. Kennedy, K. Priadharsini, P. Palani, Antibacterial activity of silver nanoparticles synthesized from serine, Mater. Sci. Eng. C, 49 (2015) 316–322.
  18. A.L. Lehninger, D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, Worth Publishers, New York, 2000.
  19. K. Soo-Hwan, H.S. Lee, D.S. Ryu, S.J. Choi, D.S. Lee, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli, Korean J. Microbiol. Biotechnol., 39 (2011) 77–85.
  20. J.Y. Kim, S.E. Kim, J.E. Kim, J.C. Lee, J.Y. Yoon, The biocidal activity of nano-sized silver particles comparing with silver ion, J. Korean Soc. Environ. Eng., 27 (2005) 771–776.
  21. M. Ince, D. Bashir, O.O.O. Oni, E.O. Awe, V. Ogbechie, K. Korve, M.A. Adeyinka, A.A. Olufolabo, F. Ofordu, M. Kehinde, Rapid Assessment of Drinking-Water Quality in the Federal Republic of Nigeria, Country Report of the Pilot Project Implementation in 2004–2005, World Health Organization, UNICEF, 2010.
  22. W.U. Anake, C.O. Ehi-Eromosele, T.O. Siyanbola, A. Edobor- Osoh, I.O. Adeniyi, O.S. Taiwo, Physico-chemical and microbial assessment of different water sources in Ota, Ogun State, Nigeria, Int. J. Curr. Res., 5 (2013) 1797–1801.
  23. C. Martínez-Vieyra, E. Gutiérrez-Segura, G. López-Tellez, D. Alcántara-Díaz, M.T. Olguín, Antimicrobial composites of nanoparticles generated by gamma irradiation supported in clinoptilolite-rich tuff, Appl. Nanosci., 11 (2021) 1183–1195.
  24. L.G. Rossainz-Castro, I. De-La-Rosa, M.T. Olguín, D. Alcántara, Comparison between silver- and
    copper-modified zeolite-rich tuffs as microbicide agents for Escherichia coli and Candida albicans, J. Environ. Manage., 183 (2016) 763–770.
  25. L. Roshanfekr-Rad, M. Anbia, Zeolite-based composites for the adsorption of toxic matters from water: a review, J. Environ. Chem. Eng., 9 (2021) 106088, doi: 10.1016/j.jece.2021.106088.
  26. M.C. Díaz-Nava, M.T. Olguín, M. Solache-Ríos, M.T. Alarcón- Herrera, A. Aguilar-Elguezabal, Characterization and improvement of ion exchange capacities of Mexican clinoptiloliterich tuffs, J. Inclusion Phenom. Macrocyclic Chem., 51 (2005) 231–240.
  27. O. Díaz-Rizol, J.C. Suárez-García, M. Gómez Saunderst, L. Zhuk, Thermal neutron activation analysis of Cuban natural zeolites, Nucleus (Havana), 14 (1993) 9–13.
  28. I. De-La-Rosa-Gómez, M.T. Olguín, D. Alcántara, Bactericides of coliform microorganisms from wastewater using silverclinoptilolite rich tuffs, Appl. Clay Sci., 40 (2008) 45–53.
  29. I. De-La-Rosa-Gómez, M.T. Olguín, D. Alcántara, Antibacterial behavior of silver-modified
    clinoptilolite-heulandite rich tuff on coliform microorganisms from wastewater in column system, J. Environ. Manage., 88 (2008) 853–863.
  30. APHA, AWWA, WEF, Standard Methods for Examination of Water and Wastewater, 18th ed., American Public Health Association, Washington, 2012.
  31. H. Chick, An investigation of the laws of disinfection, J. Hyg., 8 (1908) 92–158.
  32. L.B. Sand, F.A. Mumpton, Natural Zeolites: Occurrence, Properties, and Use, 2nd ed., Pergamon Press, USA, 1978, p. 356.
  33. D. Contreras-Arzate, M. Islas-Espinoza, C. Fall, D. Alcántara-Díaz, M.T. Olguin, R. López-Callejas, R. Peña-Eguiluz, Microbial mortality behavior promoted by silver (Ag+/Ag0)-modified zeolite-rich tuffs for water disinfection,
    J. Environ. Health Sci., 18 (2020) 755–768.
  34. D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use, John Wiley & Sons Inc., New York, 1974.
  35. P. Praus and Z. Rybková, Antibacterial and antifungal activities of silver copper and zinc montmorillonites, Appl. Clay Sci., 53 (2011) 642–645.
  36. B. Đolić-Maja, V.N. Rajaković-Ognjanović, S.B. Štrbac, N. Rakočević, L. Zlatko, N. Veljović, Dimitrijević, I. Suzana, L.V. Rajaković, The antimicrobial efficiency of silver activated sorbents, Appl. Surf. Sci., 357 (2015) 819–831.
  37. A. Montes, C. López, N. Fuentes, A. Mercado, Y. Perera, O. Pérez, G. Castruita, S. García, M. García,
    P.G.S. Rodríguez, G.M. Zamora, Characterization of natural and Ca2+ modified clinoptilolite by different physicochemical methods for its possible application in gas separation processes, Superf. y Vacío, 28 (2014) 5–11.
  38. I. De-La-Rosa-Gómez, M.T. Olguín, D. Alcántara, Silvermodified Mexican clinoptilolite-rich tuffs with various particle sizes as antimicrobial agents against Escherichia coli, J. Mex. Chem. Soc., 54 (2010) 139–142.
  39. L. Akhigbe, S. Ouki, D. Saroj, X. Min-Lim, Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from water, Environ. Sci. Pollut. Res., 21 (2014) 10940–10948.
  40. V. Petranovskii, M.A. Hernández, Zeolite-a useful rock, RD-ICUAP, 1 (2015) 1–10.
  41. M. Moshoeshoe, M.S. Nadiye-Tabbiruka, V. Obuseng, A review of the chemistry, structure, properties and applications of zeolites, Am. J. Mater. Sci., 5 (2017) 196–221.
  42. A. Quispe, S.O. Cabrera, M. Blanco, Mineralogical and crystallochemical characterization of Bolivian natural zeolites, Rev. Boliv. Quim., 36 (2009) 126–138.
  43. C. Rosabal, G. Rodríguez-Fuentes, N. Bogdanchikova, P. Bosch, M. Avalos, V.H. Lara, Comparative study of natural and synthetic clinoptilolites containing silver in different States, Microporous Mesoporous Mater., 86 (2005) 249–255.
  44. G. Busca, Acidity and basicity of zeolites: a fundamental approach, Microporous Mesoporous Mater., 254 (2017) 3–16.
  45. J. Cejka, D. Kubicka, Zeolites and Other Micro- and Mesoporous Molecular Sieves, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., US, 2010, pp. 1–27.
  46. J.B. González-Campos, J.D. Mota-Morales, S. Kumar, D. Zárate-Triviño, M. Hernández-Iturriaga, Y. Prokhorov,
    G. Luna-Bárcenas, New insights into the bactericidal activity of chitosan-Ag bio-nanocomposite: the role of the electrical conductivity, Colloids Surf., B, 111 (2013) 741–746.
  47. N. Lihareva, L. Dimova, O. Petrov, Y. Tzvetanova, Ag+ sorption on natural and Na-exchanged clinoptilolite from Eastern Rhodopes, Bulgaria, Microporous Mesoporous Mater., 130 (2010) 32–37.
  48. W.R. Li, T.L. Sun, S.L. Zhou, Y.K. Ma, Q.S. Shi, X.B. Xie, X.M. Huang, A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains, Int. Biodeterior. Biodegrad., 123 (2017) 304–310.
  49. B. Sadeghi, F.S. Garmaroudi, M. Hashemi, H.R. Nezhad, A. Nasrollahi, S. Ardalan, Comparison of the
    anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates, Adv. Powder Technol., 23 (2012) 22–26.