References

  1. F. Benassi, S. Cividino, P. Cudlin, A. Alhuseen, G.R. Lamonica, L. Salvati, Population trends and desertification risk in a Mediterranean region, 1861–2017, Land Use Policy, 95 (2020) 104626, doi:10.1016/j.landusepol.2020.104626.
  2. UNDDD, The United Nations Decade for Deserts (2010–2020) and the Fight Against Desertification, Bonn, Germany, 2017, Available at: http://www2.unccd.int/actions/united-nationsdecade- deserts-2010–2020-and-fight-against-desertification
  3. O.A. Arojojoye, A.A. Oyagbemi, J.M. Afolabi, Toxicological assessment of heavy metal bioaccumulation and oxidative stress biomarkers in Clarias gariepinus from Igbokoda river of south western Nigeria, Bull. Environ. Contam. Toxicol., 100 (2018) 765–771.
  4. Y. Feng, Q. Bao, X. Xiao, M. Lin, Geo-accumulation vector model for evaluating the heavy metal pollution in the sediments of Western Dongting Lake, J. Hydrol., 573 (2019) 40–48.
  5. J.O. Nriagu, A history of global metal pollution, Science, 272 (1996) 223, doi: 10.1126/science.272.5259.223.
  6. D.S. Malik, C.K. Jain, A.K. Yadav, Removal of heavy metals from emerging cellulosic low-cost adsorbents:
    a review, Appl. Water Sci., 7 (2017) 2113–2136.
  7. F.-J. Zhao, Y. Ma, Y.-G. Zhu, Z. Tang, S.P. McGrath, Soil contamination in China: current status and mitigation strategies, Environ. Sci. Technol., 49 (2015) 750–759.
  8. Y. Du, L. Chen, P. Ding, L.L. Liu, Q.C. He, B.Z. Chen, Y.Y. Duan, Different exposure profile of heavy metal and health risk between residents near a Pb-Zn mine and a Mn mine in Huayuan county, South China, Chemosphere, 216 (2019) 352–364.
  9. K.H. Vardhan, P. Senthil Kumar, R.C. Panda, A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives, J. Mol. Liq., 290 (2019) 111197, doi:10.1016/j.molliq.2019.111197.
  10. A.D. Gupta, K.P. Rawat, V. Bhadauria, H. Singh, Recent trends in the application of modified starch in the adsorption of heavy metals from water: a review, Carbohydr. Polym., 269 (2021) 117763, doi:10.1016/j.carbpol.2021.117763.
  11. P.N. Diagboya, B.I. Olu-Owolabi, F.M. Mtunzi, K.O. Adebowale, Clay-carbonaceous material composites: towards a new class of functional adsorbents for water treatment, Surf. Interfaces, 19 (2020) 100506, doi:10.1016/j.surfin.2020.100506.
  12. P.N.E. Diagboya, E.D. Dikio, Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment, Microporous Mesoporous Mater., 266 (2018) 252–267.
  13. Y.W. Zhou, S.Y. Qin, S. Verma, T. Sar, S. Sarsaiya, B. Ravindran, T. Liu, R. Sindhu, A.K. Patel, P. Binod, S. Varjani, R.R. Singhnia, Z.Q. Zhang, M.K. Awasthi, Production and beneficial impact of biochar for environmental application: a comprehensive review, Bioresour. Technol., 337 (2021) 125451,
    doi: 10.1016/j. biortech.2021.125451.
  14. R.E. Ampiaw, W. Lee, Persimmon tannins as biosorbents for precious and heavy metal adsorption in wastewater: a review, Int. J. Environ. Sci. Technol., 17 (2020) 3835–3846.
  15. S. Papari, K. Hawboldt, R. Helleur, Pyrolysis: a theoretical and experimental study on the conversion of softwood sawmill residues to bio oil, Ind. Eng. Chem. Res., 54 (2015) 605–611.
  16. K.Z. Benis, A.M. Damuchali, J. Soltan, K.N. McPhedran, Treatment of aqueous arsenic – a review of biochar modification methods, Sci. Total Environ., 273 (2020) 111126, doi: 10.1016/j. jenvman.2020.111126.
  17. S. Yavari, M. Abualqumboz, N. Sapari, H.-A. Hata-Suhaimi, N.-Z. Nik-Fuaad, S. Yavari, Sorption of imazapic and imazapyr herbicides on chitosan-modified biochars, Int. J. Environ. Sci. Technol., 17 (2020) 3341–3350.
  18. X. Liu, H.Y. Nan, Q. An, The Erythrina variegate biochar’s adsorption to NH4+–N and P from aqueous solution, J. Agric. Resour. Environ., 35 (2018) 66–73 (in Chinese).
  19. IBI Biochar Standards Version 2.0, Standardized Product Definition and Product Testing Guidelines for Biochar that is Used in Soil, The International Biochar Initiative, 2014. Available at: http://www.biochar-international.org/characterizationstandard; https://www.biochar-international.org/wp-content/ uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf (accessed on 23 November 2015).
  20. J. Lehmann, S. Joseph, Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed., Routledge, London, 2015. Available at: http://doi.org/10.4324/9780203762264 (accessed on 4 March 2015).
  21. M. Inyang, E. Dickenson, The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review, Chemosphere, 134 (2015) 232–240.
  22. A.U. Rajapaksha, S.S. Chen, D.C.W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification, Chemosphere, 148 (2016) 276–291.
  23. J.Y. Tang, L.H. Zhang, J.C. Zhang, L.H. Ren, Y.Y. Zhou, Y.Y. Zheng, L. Luo, Y. Yang, H.L. Huang, A.W. Chen, Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost, Sci. Total Environ., 701 (2020) 134751, doi: 10.1016/j. scitotenv.2019.134751.
  24. W. Xiang, X.Y. Zhang, J.J. Chen, W.X. Zou, F. He, X. Hu, D.C.W. Tsang, Y.S. Ok, B. Gao, Biochar technology in wastewater treatment: a critical review, Chemosphere, 252 (2020) 126539, doi:10.1016/j.chemosphere.2020.126539.
  25. Y.L. Liu, J.F. Huang, H.J. Xu, Y.L. Zhang, T. Hu, W.Z. Chen, H.J. Hu, J.H. Wu, Y.T. Li, G.B. Jiang, A magnetic macro-porous biochar sphere as vehicle for the activation and removal of heavy metals from contaminated agricultural soil, Chem. Eng. J., 390 (2020) 124638, doi: 10.1016/j.cej.2020.124638.
  26. K.P. Lu, X. Yang, G. Gielen, N. Bolan, Y.S. Ok, N.K. Niazi, S. Xu, G.D. Yuan, X. Chen, X.K. Zhang, D. Liu, Z.L. Song, X.Y. Liu, H.L. Wang, Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil, J. Environ. Manage., 186 (2017) 285–292.
  27. S.Y. Wang, J.H. Kwak, M.S. Islamd, M.A. Naeth, M.G. El-Din, S.X. Chang, Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type, Sci. Total Environ., 712 (2020) 136538, doi: 10.1016/j. scitotenv.2020.136538.
  28. T. Bandara, J.M. Xu, I.D. Potter, A. Franks, J.B.A.J. Chathurika, C.X. Tang, Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes, Chemosphere, 254 (2020) 126745, doi: 10.1016/j.chemosphere.2020.126745.
  29. D.V. Cuong, N.L. Liu, V.A. Nguyen, C.H. Hou, Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal, Sci. Total Environ., 692 (2019) 844–853.
  30. R.P. Mohubedu, P.N.E. Diagboya, C.Y. Abasi, E.D. Dikio, F. Mtunzi, Magnetic valorization of biomass and biochar of a typical plant nuisance for toxic metals contaminated water treatment, J. Cleaner Prod., 209 (2019) 1016–1024.
  31. J. Zhang, M. Lu, J. Wan, Y. Sun, H. Lan, X. Deng, Effects of pH, dissolved humic acid and Cu2+ on the adsorption of norfloxacin on montmorillonite-biochar composite derived from wheat straw, Biochem. Eng. J., 130 (2018) 104–112.
  32. H. Arabyarmohammadi, A.K. Darban, M. Abdollahy, R. Yong, B. Ayati, A. Zirakjou, S.E.A.T.M. van der Zee, Utilization of a novel chitosan/clay/biochar nanobiocomposite for immobilization of heavy metals in acid soil environment, J. Polym. Environ., 26 (2017) 2107–2119.
  33. L.Y. Gao, J.H. Deng, G.F. Huang, K. Li, K.Z. Cai, Y. Liu, F. Huang, Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge, Bioresour. Technol., 272 (2019) 114–122.
  34. L.B. Qin, X.M. Huang, Q. Xue, L. Liu, Y. Wan, In-situ biodegradation of harmful pollutants in landfill by sludge modified biochar used as biocover, Environ. Pollut., 258 (2020) 113710, doi: 10.1016/j.envpol.2019.113710.
  35. X.C. Chen, G.C. Chen, L.G. Chen, Y.X. Chen, J. Lehmann, M.B. McBride, A.G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102 (2011) 8877–8884.
  36. N. Li, M.L. Yin, D.C.W. Tsang, S.T. Yang, J. Liu, X. Li, G. Song, J. Wang, Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: a comparison between raw and modified biochar, Sci. Total Environ., 697 (2019) 134115, doi: 10.1016/j.scitotenv.2019.134115.
  37. M. Ahmad, D.H. Moon, M. Vithanage, A. Koutsospyros, S.S. Lee, J.E. Yang, S.E. Lee, C. Jeon, Y.S. Ok, Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water,
    J. Chem. Technol. Biotechnol., 89 (2014) 150–157.
  38. X.J. Hu, X.B. Zhang, H.H. Ngo, W.S. Guo, H.T. Wen, C.C. Li, Y.C. Zhang, C.J. Ma, Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel, Sci. Total Environ., 707 (2018) 135544, doi: 10.1016/j. scitotenv.2019.135544.
  39. T.A. Khan, A.A. Mukhlif, EA. Khan, Uptake of Cu2+ and Zn2+ from simulated wastewater using muskmelon peel biochar: isotherm and kinetic studies, Egypt. J. Basic Appl. Sci., 4 (2019) 236–248.
  40. S.S. Lam, R.K. Liew, C.K. Cheng, N. Rasit, C.K. Ooi, N.L. Ma, J.-H. Ng, W.H. Lam, C.T. Chong, H.A. Chase, Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent, J. Environ. Manage., 213 (2018) 400–408.
  41. Z.P. Wang, K. Liu, L. Xie, H.N. Zhu, S.B. Ji, X.Q. Shu, Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks, J. Anal. Appl. Pyrolysis, 142 (2019) 104659, doi:10.1016/j.jaap.2019.104659.
  42. Q.Q. Yin, M.T. Liu, H.P. Ren, Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water, J. Environ. Manage., 249 (2019) 109410, doi:10.1016/j.jenvman.2019.109410.
  43. J.A. Serna-Jiménez, F. Luna-Lama, Á. Caballero, M. de los Á. Martín, A.F. Chica, J.Á. Siles, Valorisation of banana peel waste as a precursor material for different renewable energy systems, Biomass Bioenergy, 155 (2021) 106279, doi: 10.1016/j. biombioe.2021.106279.
  44. J.Q. Albarelli, R.B. Rabelo, D.T. Santos, M.M. Beppu, M.A.A. Meireles, Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal, J. Supercrit. Fluids, 58 (2011) 343–351.
  45. M. Kończak, Y.Z. Gao, P. Oleszczuk, Carbon dioxide as a carrier gas and biomass addition decrease the total and bioavailable polycyclic aromatic hydrocarbons in biochar produced from sewage sludge, Chemosphere, 228 (2019) 26–34.
  46. Y. Xiao, A. Raheem, L. Ding, W.-H. Chen, X.L. Chen, F.C. Wang, S.-L. Lin, Pretreatment, modification and applications of sewage sludge-derived biochar for resource recovery – a review, Chemosphere, 287 (2022) 131969, doi: 10.1016/j.chemosphere.2021.131969.
  47. S.Y. Tao, S. Liang, X. Wu, H.J. Hou, W.B. Yu, K.K. Xiao, B.C. Liu, S.S. Yuan, J.P. Hu, J.K. Yang, Enhanced silicon bioavailability of biochar derived from sludge conditioned with Fenton’s reagent and lime, Sci. Total Environ., 806 (2021) 150941, doi: 10.1016/j. scitotenv.2021.150941.
  48. N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian, X. Lu, Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization, Bioresour. Technol., 232 (2017) 204–210.
  49. K.M. Lavanya, J.A.K. Florence, B. Vivekanandan, R. Lakshmipathy, Comparative investigations of raw and alkali metal free banana peel as adsorbent for the removal of Hg2+ ions, Mater. Today:. Proc., 2021, doi:10.1016/j.matpr.2021.07.410.
  50. M. Natalia Piol, C. Dickerman, M. Pilar Ardanza, A. Saralegui, S.P. Boeykens, Simultaneous removal of chromate and phosphate using different operational combinations for their adsorption on dolomite and banana peel,
    J. Environ. Manage., 288 (2021) 112463, doi: 10.1016/j.jenvman.2021.112463.
  51. Y. Fu, X.J. Meng, N.N. Lu, H.L. Jian, Y. Di, Characteristics changes in banana peel coagulant during storage process, Int. J. Environ. Sci. Technol., 16 (2019) 7747–7756.
  52. Y. Fu, X.J. Meng, Corresponding relationship between microorganism propagation and coagulation behavior of a hybrid fruit-peel coagulant, Desal. Water Treat., 216 (2021) 326–337.
  53. H.L. Jian, Preparation and Performance of a Hybrid Fruit-Peel Coagulant, Master Thesis, University of Jinan, Jinan, 2019 (in Chinese).
  54. M.H. Tahir, Z. Zhao, J. Ren, T. Rasool, S.R. Naqvi, Thermokinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential, Biomass Bioenergy, 122 (2019) 193–201.
  55. J. Havukainen, A. Saud, T.F. Astrup, P. Peltola, M. Horttanainen, Environmental performance of dewatered sewage sludge digestate utilization based on life cycle assessment, Waste Manage., 137 (2022) 210–221.
  56. S.C. Hua, Preparation of Mix Waste Biochar and Its Removal of Heavy Metals, Master Thesis, University of Jinan, Jinan, 2019 (in Chinese).
  57. Y.S. Ho, G. Mckay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
  58. L. Lu, Y. Lin, Q.W. Chai, S.Y. He, C.P. Yang, Removal of acenaphthene by biochar and raw biomass with coexisting heavy metal and phenanthrene, Colloids Surf., A, 558 (2018) 103–109.
  59. L. Verma, J.W. Singh, Synthesis of novel biochar from waste plant litter biomass for the removal of
    arsenic (III and V) from aqueous solution: a mechanism characterization, kinetics and thermodynamics,
    J. Environ. Manage., 248 (2019) 109235, doi: 10.1016/j.jenvman.2019.07.006.
  60. X.Z. Zhu, Y.N. Li, X.N. Wang, Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions, Bioresour. Technol., 288 (2019) 121527, doi:10.1016/j.biortech.2019.121527.
  61. X. Cui, H. Hao, C. Zhang, Z. He, X. Yang, Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars, Sci. Total Environ., 539 (2016) 566–575.
  62. P. Khawas, A.J. Das, S.C. Deka, Production of renewable cellulose nanopaper from culinary banana (Musa ABB) peel and its characterization, Ind. Crops Prod., 86 (2016) 102–112.
  63. S. Li, S. Harris, A. Anandhi, G. Chen, Predicting biochar properties and functions based on feedstock and pyrolysis temperature: a review and data syntheses, J. Cleaner Prod., 215 (2019) 890–902.
  64. C.S. Kim, J.J. Rytuba, G.E.J. Brown, EXAFS study of Hg(II) sorption to Fe- and Al-(hydr)oxides: I. Effects of pH, J. Colloid Interface Sci., 271 (2004) 1–15.
  65. B. Tansel, J. Sager, T. Rector, J. Garland, R.F. Strayer, L. Levine, M. Roberts, M. Hummerick, J. Bauer, Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes, Sep. Purif. Technol., 51 (2006) 40–47.