References
- F. Benassi, S. Cividino, P. Cudlin, A. Alhuseen, G.R. Lamonica,
L. Salvati, Population trends and desertification risk in a
Mediterranean region, 1861–2017, Land Use Policy, 95 (2020)
104626, doi:10.1016/j.landusepol.2020.104626.
- UNDDD, The United Nations Decade for Deserts (2010–2020)
and the Fight Against Desertification, Bonn, Germany, 2017,
Available at: http://www2.unccd.int/actions/united-nationsdecade-
deserts-2010–2020-and-fight-against-desertification
- O.A. Arojojoye, A.A. Oyagbemi, J.M. Afolabi, Toxicological
assessment of heavy metal bioaccumulation and oxidative
stress biomarkers in Clarias gariepinus from Igbokoda river
of south western Nigeria, Bull. Environ. Contam. Toxicol.,
100 (2018) 765–771.
- Y. Feng, Q. Bao, X. Xiao, M. Lin, Geo-accumulation vector model
for evaluating the heavy metal pollution in the sediments of
Western Dongting Lake, J. Hydrol., 573 (2019) 40–48.
- J.O. Nriagu, A history of global metal pollution, Science,
272 (1996) 223, doi: 10.1126/science.272.5259.223.
- D.S. Malik, C.K. Jain, A.K. Yadav, Removal of heavy metals
from emerging cellulosic low-cost adsorbents:
a review, Appl.
Water Sci., 7 (2017) 2113–2136.
- F.-J. Zhao, Y. Ma, Y.-G. Zhu, Z. Tang, S.P. McGrath, Soil
contamination in China: current status and mitigation strategies,
Environ. Sci. Technol., 49 (2015) 750–759.
- Y. Du, L. Chen, P. Ding, L.L. Liu, Q.C. He, B.Z. Chen, Y.Y. Duan,
Different exposure profile of heavy metal and health risk
between residents near a Pb-Zn mine and a Mn mine in Huayuan
county, South China, Chemosphere, 216 (2019) 352–364.
- K.H. Vardhan, P. Senthil Kumar, R.C. Panda, A review on
heavy metal pollution, toxicity and remedial measures: current
trends and future perspectives, J. Mol. Liq., 290 (2019) 111197,
doi:10.1016/j.molliq.2019.111197.
- A.D. Gupta, K.P. Rawat, V. Bhadauria, H. Singh, Recent trends
in the application of modified starch in the adsorption of heavy
metals from water: a review, Carbohydr. Polym., 269 (2021)
117763, doi:10.1016/j.carbpol.2021.117763.
- P.N. Diagboya, B.I. Olu-Owolabi, F.M. Mtunzi, K.O. Adebowale,
Clay-carbonaceous material composites: towards a new class
of functional adsorbents for water treatment, Surf. Interfaces,
19 (2020) 100506, doi:10.1016/j.surfin.2020.100506.
- P.N.E. Diagboya, E.D. Dikio, Silica-based mesoporous materials;
emerging designer adsorbents for aqueous pollutants removal
and water treatment, Microporous Mesoporous Mater.,
266 (2018) 252–267.
- Y.W. Zhou, S.Y. Qin, S. Verma, T. Sar, S. Sarsaiya, B. Ravindran,
T. Liu, R. Sindhu, A.K. Patel, P. Binod, S. Varjani, R.R. Singhnia,
Z.Q. Zhang, M.K. Awasthi, Production and beneficial impact
of biochar for environmental application: a comprehensive
review, Bioresour. Technol., 337 (2021) 125451,
doi: 10.1016/j.
biortech.2021.125451.
- R.E. Ampiaw, W. Lee, Persimmon tannins as biosorbents for
precious and heavy metal adsorption in wastewater: a review,
Int. J. Environ. Sci. Technol., 17 (2020) 3835–3846.
- S. Papari, K. Hawboldt, R. Helleur, Pyrolysis: a theoretical and
experimental study on the conversion of softwood sawmill
residues to bio oil, Ind. Eng. Chem. Res., 54 (2015) 605–611.
- K.Z. Benis, A.M. Damuchali, J. Soltan, K.N. McPhedran,
Treatment of aqueous arsenic – a review of biochar modification
methods, Sci. Total Environ., 273 (2020) 111126, doi: 10.1016/j.
jenvman.2020.111126.
- S. Yavari, M. Abualqumboz, N. Sapari, H.-A. Hata-Suhaimi,
N.-Z. Nik-Fuaad, S. Yavari, Sorption of imazapic and imazapyr
herbicides on chitosan-modified biochars, Int. J. Environ. Sci.
Technol., 17 (2020) 3341–3350.
- X. Liu, H.Y. Nan, Q. An, The Erythrina variegate biochar’s
adsorption to NH4+–N and P from aqueous solution, J. Agric.
Resour. Environ., 35 (2018) 66–73 (in Chinese).
- IBI Biochar Standards Version 2.0, Standardized Product
Definition and Product Testing Guidelines for Biochar that is
Used in Soil, The International Biochar Initiative, 2014. Available
at: http://www.biochar-international.org/characterizationstandard;
https://www.biochar-international.org/wp-content/
uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf
(accessed on 23 November 2015).
- J. Lehmann, S. Joseph, Biochar for Environmental Management:
Science, Technology and Implementation, 2nd ed., Routledge,
London, 2015. Available at: http://doi.org/10.4324/9780203762264
(accessed on 4 March 2015).
- M. Inyang, E. Dickenson, The potential role of biochar in the
removal of organic and microbial contaminants from potable
and reuse water: a review, Chemosphere, 134 (2015) 232–240.
- A.U. Rajapaksha, S.S. Chen, D.C.W. Tsang, M. Zhang,
M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization
from soil and water: potential and implication of biochar
modification, Chemosphere, 148 (2016) 276–291.
- J.Y. Tang, L.H. Zhang, J.C. Zhang, L.H. Ren, Y.Y. Zhou,
Y.Y. Zheng, L. Luo, Y. Yang, H.L. Huang, A.W. Chen,
Physicochemical features, metal availability and enzyme
activity in heavy metal-polluted soil remediated by biochar and
compost, Sci. Total Environ., 701 (2020) 134751, doi: 10.1016/j.
scitotenv.2019.134751.
- W. Xiang, X.Y. Zhang, J.J. Chen, W.X. Zou, F. He, X. Hu,
D.C.W. Tsang, Y.S. Ok, B. Gao, Biochar technology in wastewater
treatment: a critical review, Chemosphere, 252 (2020) 126539,
doi:10.1016/j.chemosphere.2020.126539.
- Y.L. Liu, J.F. Huang, H.J. Xu, Y.L. Zhang, T. Hu, W.Z. Chen,
H.J. Hu, J.H. Wu, Y.T. Li, G.B. Jiang, A magnetic macro-porous
biochar sphere as vehicle for the activation and removal of
heavy metals from contaminated agricultural soil, Chem. Eng.
J., 390 (2020) 124638, doi: 10.1016/j.cej.2020.124638.
- K.P. Lu, X. Yang, G. Gielen, N. Bolan, Y.S. Ok, N.K. Niazi, S. Xu,
G.D. Yuan, X. Chen, X.K. Zhang, D. Liu, Z.L. Song, X.Y. Liu,
H.L. Wang, Effect of bamboo and rice straw biochars on the
mobility and redistribution of heavy metals (Cd, Cu, Pb and
Zn) in contaminated soil, J. Environ. Manage., 186 (2017)
285–292.
- S.Y. Wang, J.H. Kwak, M.S. Islamd, M.A. Naeth, M.G. El-Din,
S.X. Chang, Biochar surface complexation and Ni(II), Cu(II), and
Cd(II) adsorption in aqueous solutions depend on feedstock
type, Sci. Total Environ., 712 (2020) 136538, doi: 10.1016/j.
scitotenv.2020.136538.
- T. Bandara, J.M. Xu, I.D. Potter, A. Franks, J.B.A.J. Chathurika,
C.X. Tang, Mechanisms for the removal of Cd(II) and Cu(II)
from aqueous solution and mine water by biochars derived
from agricultural wastes, Chemosphere, 254 (2020) 126745,
doi: 10.1016/j.chemosphere.2020.126745.
- D.V. Cuong, N.L. Liu, V.A. Nguyen, C.H. Hou, Meso/micropore-controlled
hierarchical porous carbon derived from activated
biochar as a high-performance adsorbent for copper removal,
Sci. Total Environ., 692 (2019) 844–853.
- R.P. Mohubedu, P.N.E. Diagboya, C.Y. Abasi, E.D. Dikio,
F. Mtunzi, Magnetic valorization of biomass and biochar of a
typical plant nuisance for toxic metals contaminated water
treatment, J. Cleaner Prod., 209 (2019) 1016–1024.
- J. Zhang, M. Lu, J. Wan, Y. Sun, H. Lan, X. Deng, Effects of pH,
dissolved humic acid and Cu2+ on the adsorption of norfloxacin
on montmorillonite-biochar composite derived from wheat
straw, Biochem. Eng. J., 130 (2018) 104–112.
- H. Arabyarmohammadi, A.K. Darban, M. Abdollahy, R. Yong,
B. Ayati, A. Zirakjou, S.E.A.T.M. van der Zee, Utilization of a
novel chitosan/clay/biochar nanobiocomposite for immobilization
of heavy metals in acid soil environment, J. Polym.
Environ., 26 (2017) 2107–2119.
- L.Y. Gao, J.H. Deng, G.F. Huang, K. Li, K.Z. Cai, Y. Liu,
F. Huang, Relative distribution of Cd2+ adsorption mechanisms
on biochars derived from rice straw and sewage sludge,
Bioresour. Technol., 272 (2019) 114–122.
- L.B. Qin, X.M. Huang, Q. Xue, L. Liu, Y. Wan, In-situ
biodegradation of harmful pollutants in landfill by sludge
modified biochar used as biocover, Environ. Pollut., 258 (2020)
113710, doi: 10.1016/j.envpol.2019.113710.
- X.C. Chen, G.C. Chen, L.G. Chen, Y.X. Chen, J. Lehmann,
M.B. McBride, A.G. Hay, Adsorption of copper and zinc by
biochars produced from pyrolysis of hardwood and corn straw
in aqueous solution, Bioresour. Technol., 102 (2011) 8877–8884.
- N. Li, M.L. Yin, D.C.W. Tsang, S.T. Yang, J. Liu, X. Li, G. Song,
J. Wang, Mechanisms of U(VI) removal by biochar derived
from Ficus microcarpa aerial root: a comparison between raw
and modified biochar, Sci. Total Environ., 697 (2019) 134115,
doi: 10.1016/j.scitotenv.2019.134115.
- M. Ahmad, D.H. Moon, M. Vithanage, A. Koutsospyros,
S.S. Lee, J.E. Yang, S.E. Lee, C. Jeon, Y.S. Ok, Production and
use of biochar from buffalo-weed (Ambrosia trifida L.) for
trichloroethylene removal from water,
J. Chem. Technol.
Biotechnol., 89 (2014) 150–157.
- X.J. Hu, X.B. Zhang, H.H. Ngo, W.S. Guo, H.T. Wen, C.C. Li,
Y.C. Zhang, C.J. Ma, Comparison study on the ammonium
adsorption of the biochars derived from different kinds of
fruit peel, Sci. Total Environ., 707 (2018) 135544, doi: 10.1016/j.
scitotenv.2019.135544.
- T.A. Khan, A.A. Mukhlif, EA. Khan, Uptake of Cu2+ and Zn2+
from simulated wastewater using muskmelon peel biochar:
isotherm and kinetic studies, Egypt. J. Basic Appl. Sci., 4 (2019)
236–248.
- S.S. Lam, R.K. Liew, C.K. Cheng, N. Rasit, C.K. Ooi,
N.L. Ma, J.-H. Ng, W.H. Lam, C.T. Chong, H.A. Chase,
Pyrolysis production of fruit peel biochar for potential use in
treatment of palm oil mill effluent, J. Environ. Manage., 213
(2018) 400–408.
- Z.P. Wang, K. Liu, L. Xie, H.N. Zhu, S.B. Ji, X.Q. Shu, Effects
of residence time on characteristics of biochars prepared via
co-pyrolysis of sewage sludge and cotton stalks, J. Anal. Appl.
Pyrolysis, 142 (2019) 104659, doi:10.1016/j.jaap.2019.104659.
- Q.Q. Yin, M.T. Liu, H.P. Ren, Biochar produced from the
co-pyrolysis of sewage sludge and walnut shell for ammonium
and phosphate adsorption from water, J. Environ. Manage.,
249 (2019) 109410, doi:10.1016/j.jenvman.2019.109410.
- J.A. Serna-Jiménez, F. Luna-Lama, Á. Caballero, M. de los
Á. Martín, A.F. Chica, J.Á. Siles, Valorisation of banana peel
waste as a precursor material for different renewable energy
systems, Biomass Bioenergy, 155 (2021) 106279, doi: 10.1016/j.
biombioe.2021.106279.
- J.Q. Albarelli, R.B. Rabelo, D.T. Santos, M.M. Beppu,
M.A.A. Meireles, Effects of supercritical carbon dioxide on
waste banana peels for heavy metal removal, J. Supercrit.
Fluids, 58 (2011) 343–351.
- M. Kończak, Y.Z. Gao, P. Oleszczuk, Carbon dioxide as a carrier
gas and biomass addition decrease the total and bioavailable
polycyclic aromatic hydrocarbons in biochar produced from
sewage sludge, Chemosphere, 228 (2019) 26–34.
- Y. Xiao, A. Raheem, L. Ding, W.-H. Chen, X.L. Chen,
F.C. Wang, S.-L. Lin, Pretreatment, modification and
applications of sewage sludge-derived biochar for resource
recovery – a review, Chemosphere, 287 (2022) 131969, doi:
10.1016/j.chemosphere.2021.131969.
- S.Y. Tao, S. Liang, X. Wu, H.J. Hou, W.B. Yu, K.K. Xiao, B.C. Liu,
S.S. Yuan, J.P. Hu, J.K. Yang, Enhanced silicon bioavailability of
biochar derived from sludge conditioned with Fenton’s reagent
and lime, Sci. Total Environ., 806 (2021) 150941, doi: 10.1016/j.
scitotenv.2021.150941.
- N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian, X. Lu, Biochars
with excellent Pb(II) adsorption property produced from fresh
and dehydrated banana peels via hydrothermal carbonization,
Bioresour. Technol., 232 (2017) 204–210.
- K.M. Lavanya, J.A.K. Florence, B. Vivekanandan, R. Lakshmipathy,
Comparative investigations of raw and alkali metal free
banana peel as adsorbent for the removal of Hg2+ ions, Mater.
Today:. Proc., 2021, doi:10.1016/j.matpr.2021.07.410.
- M. Natalia Piol, C. Dickerman, M. Pilar Ardanza, A. Saralegui,
S.P. Boeykens, Simultaneous removal of chromate and
phosphate using different operational combinations for their
adsorption on dolomite and banana peel,
J. Environ. Manage.,
288 (2021) 112463, doi: 10.1016/j.jenvman.2021.112463.
- Y. Fu, X.J. Meng, N.N. Lu, H.L. Jian, Y. Di, Characteristics
changes in banana peel coagulant during storage process, Int.
J. Environ. Sci. Technol., 16 (2019) 7747–7756.
- Y. Fu, X.J. Meng, Corresponding relationship between microorganism
propagation and coagulation behavior of a hybrid
fruit-peel coagulant, Desal. Water Treat., 216 (2021) 326–337.
- H.L. Jian, Preparation and Performance of a Hybrid Fruit-Peel
Coagulant, Master Thesis, University of Jinan, Jinan, 2019 (in
Chinese).
- M.H. Tahir, Z. Zhao, J. Ren, T. Rasool, S.R. Naqvi, Thermokinetics
and gaseous product analysis of banana peel pyrolysis
for its bioenergy potential, Biomass Bioenergy, 122 (2019)
193–201.
- J. Havukainen, A. Saud, T.F. Astrup, P. Peltola, M. Horttanainen,
Environmental performance of dewatered sewage sludge
digestate utilization based on life cycle assessment, Waste
Manage., 137 (2022) 210–221.
- S.C. Hua, Preparation of Mix Waste Biochar and Its Removal of
Heavy Metals, Master Thesis, University of Jinan, Jinan, 2019
(in Chinese).
- Y.S. Ho, G. Mckay, The kinetics of sorption of divalent metal
ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
- L. Lu, Y. Lin, Q.W. Chai, S.Y. He, C.P. Yang, Removal of
acenaphthene by biochar and raw biomass with coexisting
heavy metal and phenanthrene, Colloids Surf., A, 558 (2018)
103–109.
- L. Verma, J.W. Singh, Synthesis of novel biochar from waste
plant litter biomass for the removal of
arsenic (III and V) from
aqueous solution: a mechanism characterization, kinetics and
thermodynamics,
J. Environ. Manage., 248 (2019) 109235, doi:
10.1016/j.jenvman.2019.07.006.
- X.Z. Zhu, Y.N. Li, X.N. Wang, Machine learning prediction of
biochar yield and carbon contents in biochar based on biomass
characteristics and pyrolysis conditions, Bioresour. Technol.,
288 (2019) 121527, doi:10.1016/j.biortech.2019.121527.
- X. Cui, H. Hao, C. Zhang, Z. He, X. Yang, Capacity and
mechanisms of ammonium and cadmium sorption on different
wetland-plant derived biochars, Sci. Total Environ., 539 (2016)
566–575.
- P. Khawas, A.J. Das, S.C. Deka, Production of renewable
cellulose nanopaper from culinary banana (Musa ABB) peel
and its characterization, Ind. Crops Prod., 86 (2016) 102–112.
- S. Li, S. Harris, A. Anandhi, G. Chen, Predicting biochar
properties and functions based on feedstock and pyrolysis
temperature: a review and data syntheses, J. Cleaner Prod.,
215 (2019) 890–902.
- C.S. Kim, J.J. Rytuba, G.E.J. Brown, EXAFS study of Hg(II)
sorption to Fe- and Al-(hydr)oxides: I. Effects of pH, J. Colloid
Interface Sci., 271 (2004) 1–15.
- B. Tansel, J. Sager, T. Rector, J. Garland, R.F. Strayer, L. Levine,
M. Roberts, M. Hummerick, J. Bauer, Significance of hydrated
radius and hydration shells on ionic permeability during
nanofiltration in dead end and cross flow modes, Sep. Purif.
Technol., 51 (2006) 40–47.