References

  1. Y. Wang, P. Zhang, K. Wen, X. Su, J. Zhu, H. He, A new insight into the compositional and structural control of porous clay heterostructures from the perspective of NMR and TEM, Microporous Mesoporous Mater., 224 (2016) 285–293.
  2. J.E. Aguiar, J.A. Cecilia, P.A.S. Tavares, D.C.S. Azevedo, E. Rodríguez-Castellón, S.M.P. Lucena, I.J. Silva Jr., Adsorption study of reactive dyes onto porous clay heterostructures, Appl. Clay Sci., 135 (2017) 35–44.
  3. R. Sanchis, J.A. Cecilia, M.D. Soriano, M.I. Vázquez, A. Dejoz, J.M. López Nieto, E. Rodríguez Castellón, B. Solsona, Porous clays heterostructures as supports of iron oxide for environmental catalysis, Chem. Eng. J., 334 (2018) 1159–1168.
  4. L. Chmielarz, A. Kowalczyk, M. Skoczek, M. Rutkowska, B. Gil, P. Natkański, M. Radko, M. Motak, R. Dębek,
    J. Ryczkowski, Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols, Appl. Clay Sci., 160 (2018) 116–125.
  5. N. Bunnak, S. Ummartyotin, P. Laoratanakul, A.S. Bhalla, H. Manuspiya, Synthesis and characterization of magnetic porous clay heterostructure, J. Porous Mater., 21 (2014) 1–8.
  6. C. Santos, M. Andrade, A.L. Vieira, A. Martins, J. Pires, C. Freire, A.P. Carvalho, Templated synthesis of carbon materials mediated by porous clay heterostructures, Carbon, 48 (2010) 4049–4056.
  7. J. Mittal, Recent progress in the synthesis of layered double hydroxides and their application for the adsorptive removal of dyes: a review, J. Environ. Manage., 295 (2021) 113017.
  8. A. Charbonneau, Toxicité sérotoninergique résultant d’une interaction médicamenteuse entre le bleu de méthylène et les inhibiteurs de la recapture de la sérotonine, Can. J. Hosp. Pharm., 66 (2013) 241–252.
  9. V.K. Gupta, S. Agarwal, R. Ahmad, A. Mirza, J. Mittal, Sequestration of toxic Congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite, Int. J. Biol. Macromol., 158 (2020) 1310–1318.
  10. S. Soni, P.K. Bajpai, D. Bharti, J. Mittal, C. Arora, Removal of crystal violet from aqueous solution using iron based metal organic framework, Desal. Water Treat., 205 (2020) 386–399.
  11. J. Mittal, A. Mariyam, F. Sakina, R.T. Baker, A.K. Sharma, A. Mittal, Batch and bulk adsorptive removal of anionic dye using metal/halide-free ordered mesoporous carbon as adsorbent, J. Cleaner Prod., 321 (2021) 129060, doi: 10.1016/j. jclepro.2021.129060.
  12. A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma, A. Mittal, Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent, Arabian J. Chem., 14 (2021) 103186, doi: 10.1016/j. arabjc.2021.103186.
  13. S. Soni, P.K. Bajpai, J. Mittal, C. Arora, Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water, J. Mol. Liq., 314 (2020) 113642, doi:10.1016/j.molliq.2020.113642.
  14. A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma, Adsorption behaviour of Chrysoidine R dye on a metal/halidefree variant of ordered mesoporous carbon, Desal. Water Treat., 223 (2021) 425–433.
  15. A. Patel, S. Soni, J. Mittal, A. Mittal, C. Arora, Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome, Desal. Water Treat., 220 (2021) 342–352.
  16. A. Umar, M.S. Khan, S. Alam, I. Zekker, J. Burlakovs, S.S. dC Rubin, G.D. Bhowmick, A. Kallistova, N. Pimenov,
    M. Zahoor, Synthesis and characterization of Pd-Ni bimetallic nanoparticles as efficient adsorbent for the removal of Acid Orange 8 present in wastewater, Water, 13 (2021) 1095, doi: 10.3390/w13081095.
  17. D. Humelnicu, E.S. Dragan, M. Ignat, M.V. Dinu, A comparative study on Cu2+, Zn2+, Ni2+, Fe3+, and Cr3+ metal ions removal from industrial wastewaters by chitosan-based composite cryogels, Molecules, 25 (2020) 2664, doi: 10.3390/molecules25112664.
  18. A. Zh. Baimenov, D.A. Berillo, K. Moustakas, V.J. Inglezakis, Efficient removal of mercury(II) from water by use of cryogels and comparison to commercial adsorbents under environmentally relevant conditions, J. Hazard. Mater., 399 (2020) 123056, doi: 10.1016/j.jhazmat.2020.123056.
  19. D. Zhang, K. Zhang, X. Hu, Q. He, J. Yan, Y. Xue, Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: batch adsorption, response surface analysis and fixed bed filtration, J. Hazard. Mater., 408 (2021) 124860, doi: 10.1016/j.jhazmat.2020.124860.
  20. G.K. Gupta, M.K. Mondal, Mechanism of Cr(VI) uptake onto sagwan sawdust derived biochar and statistical optimization via response surface methodology, Biomass Convers. Bioref., (2020),
    doi: 10.1007/s13399-020-01082-5.
  21. A.S. Khan, T.H. Ibrahim, M.I. Khamis, P. Nancarrow, J. Iqbal, I. AlNashef, N. Abdel Jabbar, M.F. Hassan, F.S. Mjalli, Preparation of sustainable activated carbon-alginate beads impregnated with ionic liquid for phenol decontamination, J. Cleaner Prod., 321 (2021) 128899, doi: 10.1016/j.jclepro.2021.128899.
  22. G. Derafa, H. Zaghouane-Boudiaf, New eco-friendly composite beads from biomass activated carbon for removal of highly toxic 2,4-dichlorophenol from aqueous medium: equilibrium, modeling and thermodynamic studies, Desal. Water Treat., 209 (2021) 324–333.
  23. C. Zhou, Q. Wu, T. Lei, I.I. Negulescu, Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels, Chem. Eng. J., 251 (2014) 17–24.
  24. L. Obeid, N. El Kolli, N. Dali, D. Talbot, S. Abramson, M. Welschbillig, V. Cabuil, A. Bée, Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads, J. Colloid Interface Sci., 432 (2014) 182–189.
  25. S. Ismadji, D.S. Tong, F.E. Soetaredjo, A. Ayucitra, W.H. Yu, C.H. Zhou, Bentonite hydrochar composite for removal of ammonium from Koi fish tank, Appl. Clay Sci., 114 (2015) 467–473.
  26. A. Aichour, H. Zaghouane-Boudiaf, Highly brilliant green removal from wastewater by mesoporous adsorbents: kinetics, thermodynamics and equilibrium isotherm studies, Microchem. J., 146 (2019) 1255–1262.
  27. D. Garmia, H. Zaghouane-Boudiaf, C. Viseras Ibbora, Preparation and characterization of new low cost adsorbent beads based on activated bentonite encapsulated with calcium alginate for removal of
    2,4-dichlorophenol from aqueous medium, Int. J. Biol. Macromol., 115 (2018) 257–265.
  28. N. Belhouchat, H. Zaghouane-Boudiaf, C. Viseras, Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads, Appl. Clay Sci., 135 (2017) 9–15.
  29. E. Baigorria, L.A. Cano, L.M. Sanchez, V.A. Alvarez, R.P. Ollier, Bentonite-composite polyvinyl alcohol/alginate hydrogel beads: preparation, characterization and their use as arsenic removal devices, Environ. Nanotechnol. Monit. Manage., 14 (2020) 100364, doi: 10.1016/j.enmm.2020.100364.
  30. H. Khalaf, O. Bouras, V. Perrichon, Synthesis and characterization of Al-pillared and cationic surfactant modified Al-pillared Algerian bentonite, Microporous Mesoporous Mater., 8 (1997) 141–150.
  31. B.K. Nandi, A. Goswami, M.K. Purkait, Adsorption characteristics of brilliant green dye on kaolin, J. Hazard. Mater., 161 (2009) 387–395.
  32. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73 (1951) 373–380.
  33. A.J. Schwanke, S.B.C. Pergher, Porous heterostructured clays – recent advances and challenges – revisão, Cerâmica, 59 (2013) 576–587.
  34. F. Kooli, Porous clay heterostructures (PCHs) from Al13-intercalated and Al13-pillared montmorillonites: properties and heptane hydro-isomerization catalytic activity, Microporous Mesoporous Mater., 184 (2014) 184–192.
  35. T.-H. Wang, T.-Y. Liu, D.-C. Wu, M.-H. Li, J.-R. Chen, S.-P. Teng, Performance of phosphoric acid activated montmorillonite as buffer materials for radioactive waste repository, J. Hazard. Mater., 173 (2010) 335–342.
  36. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  37. H. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem., 57 (1906) 385–470.
  38. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24 (1898) 1–39.
  39. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  40. K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
  41. W.J. Weber, J.C. Morris, Water Pollution Symposium, Proc. Int. Conf. Pergamon, Oxford, 1962, pp. 231–266.
  42. B. Assia, Md. A. Islam, H. Zaghouane-Boudiaf, M. Boutahala, B.H. Hameed, Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue, Chem. Eng. J., 270 (2015) 621–630.
  43. B.H. Hameed, Evaluation of papaya seeds as a novel nonconventional low-cost adsorbent for removal of methylene blue, J. Hazard. Mater., 162 (2009) 344–350.
  44. S. Dutta, A. Bhattacharyya, A. Ganguly, S. Gupta, S. Basu, Application of Response Surface Methodology for preparation of low-cost adsorbent from citrus fruit peel and for removal of methylene blue, Desalination, 275 (2011) 26–36.
  45. K. Amela, M.A. Hassen, D. Kerroum, Isotherm and kinetics study of biosorption of cationic dye onto banana peel, Energy Procedia, 19 (2012) 286–295.
  46. O. Pezoti Jr., A.L. Cazetta, I.P.A.F. Souza, K.C. Bedin, A.C. Martins, T.L. Silva, V.C. Almeida, Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.), J. Ind. Eng. Chem., 20 (2014) 4401–4407.
  47. A. Amina, H. Zaghouane-Boudiaf, C. Viseras Iborra, M. Sanchez Polo, Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: kinetics, equilibrium and thermodynamic studies, J. Mol. Liq., 256 (2018) 533–540.
  48. H. Yan, H. Li, H. Yang, A. Li, R. Cheng, Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere, Chem. Eng. J., 223 (2013) 402–411.