References

  1. H. Gu, W. Lin, S. Sun, C. Wu, F. Yang, Z. Ye, N. Chen, J. Ren, S. Zheng, Calcium oxide modification of activated sludge as a low-cost adsorbent: preparation and application in Cd(II) removal, Ecotoxicol. Environ. Saf., 209 (2021) 111760, doi: 10.1016/j.ecoenv.2020.111760.
  2. R. Guan, X. Yuan, Z. Wu, L. Jiang, Y. Li, G. Zeng, Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: a review, Chem. Eng. J., 339 (2018) 519–530.
  3. Y. Liu, X. Kang, X. Li, Z. Wang, Z. Jin, Performance and mechanism of sludge dewaterability enhanced by potassium ferrate pretreatment and calcium chloride addition, J. Water Reuse Desal., 7 (2017) 136–141.
  4. T. Kopac, Hydrogen storage characteristics of bio-based porous carbons of different origin: a comparative review, Int. J. Energy Res., 45 (2021) 20497–20523.
  5. P. Hadi, X. Meng, N. Chao, C. Lin, G. Mckay, A critical review on preparation, characterization and utilization of sludgederived activated carbons for wastewater treatment, Chem. Eng. J., 260 (2015) 895–906.
  6. R. Chitongo, B.O. Opeolu, O.S. Olatunji, Abatement of amoxicillin, ampicillin, and chloramphenicol from aqueous solutions using activated carbon prepared from grape slurry, Clean Soil Air Water, 47 (2019) 1800077, doi: 10.1002/ clen.201800077.
  7. L. Wang, Y. Chang, Q. Liu, Fate and distribution of nutrients and heavy metals during hydrothermal carbonization of sewage sludge with implication to land application, J. Cleaner Prod., 225 (2019) 972–983.
  8. A. Raheem, V. Sikarwar, J. He, W. Dastyar, Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review, Chem. Eng. J., 337 (2018) 616–641.
  9. C. Liu, Z. Tang, Y. Chen, S. Su, Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite, Bioresour. Technol., 101 (2010) 1097–1101.
  10. P. Devi, A.K. Saroha, Utilization of sludge based adsorbents for the removal of various pollutants: a review, Sci. Total Environ., 578 (2017) 16–33.
  11. J. Yener, T. Kopac, G. Dogu, T. Dogu, Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon, Chem. Eng. J., 144 (2008) 400–406.
  12. A.M. Ghaedi, M. Ghaedi, P. Karami, Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: artificial neural network modeling, Spectrochim. Acta, Part A, 138 (2015) 789–799.
  13. J. Yener, T. Kopac, G. Dogu, T. Dogu, Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite, J. Colloid Interface Sci., 294 (2006) 255–264.
  14. J. Yener, T. Kopac, G. Dogu, T. Dogu, Batch adsorber rate analysis of methylene blue on amberlite and clinoptilolite, Sep. Sci. Technol., 41 (2006) 1857–1879.
  15. N. Dehghanian, M. Ghaedi, A. Ansari, A. Ghaedi, A. Vafaei, M. Asif, A random forest approach for predicting the removal of Congo red from aqueous solutions by adsorption onto tin sulfide nanoparticles loaded on activated carbon, Desal. Water Treat., 57 (2016) 9272–9285.
  16. E.B. Mostafa, M. Ahmed, B. Gao, X. Yin, A. Zahoor, H. Wang, Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: experimental observations and mechanisms, Chemosphere, 208 (2018) 887–898.
  17. J. Ma, B. Zhou, H. Zhang, W. Zhang, Fe/S modified sludgebased biochar for tetracycline removal from water, Powder Technol., 364 (2019) 889–900.
  18. J. Liu, Z. Huang, Z. Chen, Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb(II) from water, J. Cleaner Prod., 257 (2020) 120322, doi: 10.1016/j.jclepro.2020.120322.
  19. G. Jaria, V. Calisto, C.P. Silva, M.V. Gil, M. Otero, V.I. Esteves, Obtaining granular activated carbon from paper mill sludge – a challenge for application in the removal of pharmaceuticals from wastewater, Sci. Total Environ., 653 (2019) 393–400.
  20. D. Liu, Y. Tao, K. Li, J. Yu, Influence of the presence of three typical surfactants on the adsorption of nickel(II) to aerobic activated sludge, Bioresour. Technol., 126 (2012) 56–63.
  21. K.M. Smith, G.D. Fowler, S. Pullket, N.J.D. Graham, Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications, Water Res., 43 (2019) 2569–2594.
  22. T. Kopac, E. Sulu, A. Toprak, Effect of KOH treatment on bituminous coal for the effective removal of Basic Blue 41 dye from aqueous solutions, Desal. Water Treat., 57 (2016) 29007–29018.
  23. O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production – a review, Renewable Sustainable Energy Rev., 11 (2007) 1966–2005.
  24. X. Yang, G. Xu, H. Yu, Z. Zhang, Preparation of ferricactivated sludge-based adsorbent from biological sludge for tetracycline removal, Bioresour. Technol., 211 (2016) 566–573.
  25. Q. Yang, X. Wang, W. Luo, J. Sun, Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge, Bioresour. Technol., 247 (2018) 537–544.
  26. M. Inyang, E. Dickenson, The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review, Chemosphere, 134 (2015) 232–240.
  27. O. Duman, C.Ö. Diker, S. Tunç, Development of highly hydrophobic and superoleophilic fluoro organothiol-coated carbonized melamine sponge/rGO composite absorbent material for the efficient and selective absorption of oily substances from aqueous environments, J. Environ. Chem. Eng., 9 (2021) 105093, doi: 10.1016/j.jece.2021.105093.
  28. Y. Wu, X.-T. Yang, F. Xin, X.-R. Cheng, Hydrothermal conversion of waste cartons into a magnetic carbon-iron composite for use as an efficient and recyclable dye adsorbent, J. Colloid Interface Sci., 578 (2020) 717–725.
  29. A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ., 660 (2019) 277–287.
  30. L. Hu, C. Guang, Y. Liu, Z. Su, Adsorption behaviour of dyes from an aqueous solution onto composite magnetic lignin adsorbent, Chemosphere, 246 (2020) 125757, doi: 10.1016/j. chemosphere.2019.125757.
  31. B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy Environ. Sci., 9 (2016) 102–106.
  32. L. Yang, Y. Zhan, Y. Gong, E. Ren, Development of ecofriendly CO2-responsive cellulose nanofibril aerogels as “green” adsorbents for anionic dyes removal, J. Hazard. Mater., 405 (2021) 124194, doi: 10.1016/j.jhazmat.2020.124194.
  33. A.H. Jawad, N.S.A. Mubarak, A.S. Abdulhameed, Tunable Schiff’s base-cross-linked chitosan composite for the removal of reactive red 120 dye: adsorption and mechanism study, Int. J. Biol. Macromol., 142 (2020) 732–741.
  34. A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry, Chemosphere, 262 (2021) 128322, doi: 10.1016/j. chemosphere.2020.128322.
  35. O. Duman, E. Ayranci, Structural and ionization effects on the adsorption behaviors of some anilinic compounds from aqueous solution onto high-area carbon-cloth, J. Hazard. Mater., 120 (2005) 173–181.
  36. C. Patra, R. Gupta, D. Bedadeep, S. Narayanasamy, Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: a detail insight, Environ. Pollut., 266 (2020) 115102, doi: 10.1016/j. envpol.2020.115102.
  37. O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O. Santos, J.V. Visentainer, V.C. Almeida, NaOHactivated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies, Chem. Eng. J., 288 (2016) 778–788.
  38. X. Kang, Y. Liu, C. Yang, H. Cheng, Removal of amoxicillin from aqueous solution using sludge-based activated carbon modified by walnut shell and nano-titanium dioxide, J. Water Reuse Desal., 11 (2021) 97–109.
  39. S. Chowdhury, J. Sikder, T. Mandal, G. Halder, Comprehensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge, Sci. Total Environ., 665 (2019) 438–452.
  40. J.P. Simonin, On the comparison of pseudo-first-order and pseudo-second-order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  41. O. Duman, S. Tunç, B.K. Bozoğlan, T.G. Polat, Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite, J. Alloys Compd., 687 (2016) 370–383.
  42. E. Ayranci, O. Duman, In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth, Sep. Sci. Technol., 44 (2009) 3735–3752.
  43. X. Guo, B. Du, W. Qin, J. Yang, Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water, J. Hazard. Mater., 278 (2014) 211–220.
  44. S. Banerjee, S. Mukherjee, A. Laminka-ot, S.R. Joshi, T. Mandal, G. Halder, Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: isotherm, kinetics, thermodynamics and cost estimation, J. Adv. Res., 7 (2016) 597–610.
  45. O. Duman, S. Tunç, T.G. Polat, Determination of adsorptive properties of expanded vermiculite for the removal of C.I. Basic Red 9 from aqueous solution: kinetic, isotherm and thermodynamic studies, Appl. Clay Sci., 109 (2015) 22–32.
  46. O. Duman, T.G. Polat, C.Ö. Diker, S. Tunç, Agar/κ-carrageenan composite hydrogel adsorbent for the removal of methylene blue from water, Int. J. Biol. Macromol., 160 (2020) 823–835.
  47. M. Ghaedi, A. Ansari, P.A. Nejad, A. Ghaedi, A. Vafaei, M.H. Habibi, Artificial neural network and bees algorithm for removal of Eosin B using cobalt oxide nanoparticle-activated carbon: isotherm and Kinetics study, Environ. Prog. Sustainable Energy, 34 (2015) 155–168.
  48. M.M. Hassan, C.M. Carr, A critical review on recent advancements of the removal of reactive dyes from dye house effluent by ion-exchange adsorbents, Chemosphere, 209 (2018) 201–219.
  49. M.A. Fard, B. Barkdoll, Using recyclable magnetic carbon nanotube to remove micropollutants from aqueous solutions, J. Mol. Liq., 249 (2018) 193–202.
  50. K.L. Yu, L.X. Jiat, H.C. Ong, W.H. Chen, Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: equilibrium, kinetic and mechanism modeling, Environ. Pollut., 272 (2021) 115986, doi: 10.1016/j.envpol.2020.115986.