References

  1. L. Zhu, H. Xu, W. Xiao, J. Lu, D. Lu, X. Chen, X. Zheng, E. Jeppesen, W. Zhang, L. Wang, Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour.) Hara, Water Res., 170 (2020) 115354, doi: 10.1016/j.watres.2019.115354.
  2. B.W. Schwab, E.P. Hayes, J.M. Fiori, F.J. Mastrocco, N.M. Roden, D. Cragin, R.D. Meyerhoff, V.J. D’Aco, P.D. Anderson, Human pharmaceuticals in US surface waters: a human health risk assessment, Regul. Toxicol. Pharm., 42 (2005) 296–312.
  3. S.K. Behera, H.W. Kim, J.-E. Oh, H.-S. Park, Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea, Sci. Total Environ., 409 (2011) 4351–4360.
  4. P. Guerra, M. Kim, A. Shah, M. Alaee, S.A. Smyth, Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes, Sci. Total Environ., 473–474 (2014) 235–243.
  5. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance, Environ. Sci. Technol., 36 (2002) 1202–1211.
  6. M. Pan, L.M. Chu, Fate of antibiotics in soil and their uptake by edible crop, Sci. Total Environ., 599–600 (2017) 500–512.
  7. S. Foteinis, A.G.L. Borthwick, Z. Frontistis, D. Mantzavinos, E. Chatzisymeon, Environmental sustainability of light-driven processes for wastewater treatment applications, J. Cleaner Prod., 182 (2018) 8–15.
  8. B. Varga, V. Somogyi, M. Meiczinger, N. Kováts, E. Domokos, Enzymatic treatment and subsequent toxicity of organic micropollutants using oxidoreductases – a review, J. Cleaner Prod., 221 (2019) 306–322.
  9. Y. Ma, L. Yang, L. Wu, P. Li, X. Qi, L. He, S. Cui, Y. Ding, Z. Zhang, Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal, Sci. Total Environ., 718 (2020) 137299, doi: 10.1016/j. scitotenv.2020.137299.
  10. G. Jaria, V. Calisto, M.V. Gil, P. Ferreira, S.M. Santos, M. Otero, V.I. Esteves, Effects of thiol functionalization of a waste-derived activated carbon on the adsorption of sulfamethoxazole from water: kinetic, equilibrium and thermodynamic studies, J. Mol. Liq., 323 (2021) 115003, doi: 10.1016/j.molliq.2020.115003.
  11. J.C. Serna-Carrizales, V.H. Collins-Martínez, E. Flórez, C.F.A. Gomez-Duran, G. Palestino, R. Ocampo-Pérez, Adsorption of sulfamethoxazole, sulfadiazine and sulfametazine in single and ternary systems on activated carbon. Experimental and DFT computations, J. Mol. Liq., 324 (2021) 114740, doi:10.1016/j.molliq.2020.114740.
  12. F. Yu, Y. Li, S. Han, J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153 (2016) 365–385.
  13. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir, K. Sornalingam, Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water, Chem. Eng. J., 311 (2017) 348–358.
  14. Y. Liu, X. Liu, G. Zhang, T. Ma, T. Du, Y. Yang, S. Lu, W. Wang, Adsorptive removal of sulfamethazine and sulfamethoxazole from aqueous solution by hexadecyl trimethyl ammonium bromide modified activated carbon, Colloids Surf., A, 564 (2019) 131–141.
  15. X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: a review, Chem. Eng. J., 170 (2011) 395–410.
  16. O.G. Apul, T. Karanfil, Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review, Water Res., 68 (2015) 34–55.
  17. J. Wei, W. Sun, W. Pan, X. Yu, G. Sun, H. Jiang, Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: experiments and theoretical calculation, Chem. Eng. J., 312 (2017) 167–179.
  18. C. Peiris, S.R. Gunatilake, T.E. Mlsna, D. Mohan, M. Vithanage, Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review, Bioresour. Technol., 246 (2017) 150–159.
  19. S.Y. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  20. Y.S. Ho, G. McKay (Fellow), Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Prot., 76 (1998) 183–191.
  21. W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solutions, J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89 (1963) 31–60.
  22. Y. Li, M.A. Taggart, C. McKenzie, Z. Zhang, Y. Lu, S. Pap, S. Gibb, Utilizing low-cost natural waste for the removal of pharmaceuticals from water: mechanisms, isotherms and kinetics at low concentrations, J. Cleaner Prod., 227 (2019) 88–97.
  23. S. Pi, A. Li, D. Cui, Z. Su, L. Feng, F. Ma, J. Yang, Biosorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on extracellular polymeric substances extracted from Klebsiella sp. J1, Bioresour. Technol., 272 (2019) 346–350.
  24. M.-Y. Chang, R.-S. Juang, Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay, J. Colloid Interface Sci., 278 (2004) 18–25.
  25. Y. Liu, Y. Peng, B. An, L. Li, Y. Liu, Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: batch experiments and DFT calculations, Chemosphere, 246 (2020) 125778, doi:10.1016/j.chemosphere.2019.125778
  26. X. Zhang, Y. Zhang, H.H. Ngo, W. Guo, H. Wen, D. Zhang, C. Li, L. Qi, Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar, Sci. Total Environ., 716 (2020) 137015, doi: 10.1016/j. scitotenv.2020.137015.
  27. S. Zhang, T. Shao, S.S.K. Bekaroglu, T. Karanfil, Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry, Water Res., 44 (2010) 2067–2074.
  28. A. Jakubus, K. Godlewska, M. Gromelski, K. Jagiello, T. Puzyn, P. Stepnowski, M. Paszkiewicz, The possibility to use multiwalled carbon nanotubes as a sorbent for dispersive solid phase extraction of selected pharmaceuticals and their metabolites: effect of extraction condition, Microchem. J., 146 (2019) 1113–1125.
  29. W. Yang, Y. Lu, F. Zheng, X. Xue, N. Li, D. Liu, Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube, Chem. Eng. J., 179 (2012) 112–118.
  30. N.F. Nejad, E. Shams, M.K. Amini, J.C. Bennett, Ordered mesoporous carbon CMK-5 as a potential sorbent for fuel desulfurization: application to the removal of dibenzothiophene and comparison with CMK-3, Microporous Mesoporous Mater., 168 (2013) 239–246.
  31. Y. Sun, H. Li, G. Li, B. Gao, Q. Yue, X. Li, Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation, Bioresour. Technol., 217 (2016) 239–244.
  32. T. Santhi, S. Manonmani, T. Smitha, Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption, J. Hazard. Mater., 179 (2010) 178–186.
  33. X. Wei, Z. Zhang, L. Qin, J. Dai, Template-free preparation of yeast-derived three-dimensional hierarchical porous carbon for highly efficient sulfamethazine adsorption from water, J. Taiwan Inst. Chem. Eng., 95 (2019) 532–540.
  34. X. Yu, L. Zhang, M. Liang, W. Sun, pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents, Chem. Eng. J., 279 (2015) 363–371.
  35. S.W. Nam, C. Jung, H. Li, M. Yu, J.R.V. Flora, L.K. Boateng, N. Her, K.D. Zoh, Y. Yoon, Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution, Chemosphere, 136 (2015) 20–26.
  36. H. Zhao, X. Liu, Z. Cao, Y. Zhan, X. Shi, Y. Yang, J. Zhou, J. Xu, Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multiwalled carbon nanotubes, J. Hazard. Mater., 310 (2016) 235–245.
  37. Y. Gao, Q. Yue, B. Gao, Y. Sun, Optimization preparation of activated carbon from Enteromorpha prolifra using response surface methodology and its adsorption studies of fluoroquinolone antibiotics, Desal. Water Treat., 55 (2015) 624–636.
  38. S. Deng, Q. Zhang, Y. Nie, H. Wei, B. Wang, J. Huang, G. Yu, B. Xing, Sorption mechanisms of perfluorinated compounds on carbon nanotubes, Environ. Pollut., 168 (2012) 138–144.
  39. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 40 (1918) 1361–1402.
  40. H. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  41. Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei, L. Luo, M. Lei, L. Tang, Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling, Bioresour. Technol., 245 (2017) 266–273.
  42. L. Tang, J. Yu, Y. Pang, G. Zeng, Y. Deng, J. Wang, X. Ren, S. Ye, B. Peng, H. Feng, Sustainable efficient adsorbent: alkaliacid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal, Chem. Eng. J., 336 (2018) 160–169.
  43. L. Zheng, D. Peng, P. Meng, Promotion effects of nitrogenous and oxygenic functional groups on cadmium(II) removal by carboxylated corn stalk, J. Cleaner Prod., 201 (2018) 609–623.
  44. H. Chen, B. Gao, H. Li, Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene, J. Environ. Chem. Eng., 2 (2014) 310–315.
  45. J. Wan, H. Deng, J. Shi, L. Zhou, T. Su, Synthesized magnetic manganese ferrite nanoparticles on activated carbon for sulfamethoxazole removal, CLEAN – Soil Air Water, 42 (2014) 1199–1207.
  46. Y.-K. Choi, E. Kan, Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water, Chemosphere, 218 (2018) 741–748.
  47. F. Wang, W. Sun, W. Pan, N. Xu, Adsorption of sulfamethoxazole and 17β-estradiol by carbon
    nanotubes/CoF2O4 composites, Chem. Eng. J., 274 (2015) 17–29.
  48. B. Peng, L. Chen, C. Que, K. Yang, F. Deng, X. Deng, G. Shi, G. Xu, M. Wu, Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π–π interactions, Sci. Rep., 6 (2016) 31920, doi:10.1038/srep31920.
  49. A.U. Rajapaksha, M. Vithanage, M. Zhang, M. Ahmad, D. Mohan, S.X. Chang, Y.S. Ok, Pyrolysis condition affected sulfamethazine sorption by tea waste biochars, Bioresour. Technol., 166 (2014) 303–308.
  50. Q.Q. Yang, G.C. Chen, J.F. Zhang, H.L. Li, Adsorption of sulfamethazine by multiwalled carbon nanotubes: effects of aqueous solution chemistry, RSC Adv., 5 (2015) 25541–25549.
  51. Y. Liu, X. Liu, W. Dong, L. Zhang, Q. Kong, W. Wang, Efficient adsorption of sulfamethazine onto modified activated carbon: a plausible adsorption mechanism, Sci. Rep., 7 (2017) 12437,
    doi: 10.1038/s41598-017-12805-6.
  52. T.A.T. Aboul-Kassim, B.R.T. Simoneit, Pollutant-Solid Phase Interactions: Mechanism, Chemistry and Modeling, Springer- Verlag, Berlin, Heidelberg, 2001, pp. 129–132.
  53. R.A. Dobbs, L. Wang, R. Govind, Sorption of toxic organic compounds on wastewater solids: correlation with fundamental properties, Environ. Sci. Technol., 23 (1989) 1092–1097.
  54. K. Xia, A. Bhandari, K. Das, G. Pillar, Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids, J. Environ. Qual., 34 (2005) 91–104.
  55. P.Z. Sun, Y.X. Li, T. Meng, R.C. Zhang, M. Song, J. Ren, Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine, Water Res., 147 (2018) 91–100.
  56. H. Peng, B. Pan, M. Wu, Y. Liu, D. Zhang, B. Xing, Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicityand structure-controlled process, J. Hazard. Mater., 233–234 (2012) 89–96.
  57. H. Nollet, M. Roels, P. Lutgen, P. Meeren, W. Verstraete, Removal of PCBs from wastewater using fly ash, Chemosphere, 53 (2003) 655–665.
  58. P.W. Atkin, Physical Chemistry, 4th ed., Oxford University Press, London, 1990.
  59. B. Senthil Rathi, P. Senthil Kumar, Application of adsorption process for effective removal of emerging contaminants from water and wastewater, Environ. Pollut., 280 (2021) 116995, doi:10.1016/j.envpol.2021.116995.
  60. M. Alkan, O. Demirbaş, S. Çelikçapa, M. Doğan, Sorption of acid red 57 from aqueous solution onto sepiolite,
    J. Hazard. Mater., 116 (2004) 135–145.
  61. D. Zhao, G. Sheng, J. Hu, C. Chen, X. Wang, The adsorption of Pb(II) on Mg2Al layered double hydroxide, Chem. Eng. J., 171 (2011) 167–174.
  62. M. Kara, H. Yuzer, E. Sabah, M.S. Celik, Adsorption of cobalt from aqueous solutions onto sepiolite, Water Res., 37 (2003) 224–232.
  63. Y. Liu, Y.J. Liu, Biosorption isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.