References
- S.S. Muhamad, I. Suzylawati, Equilibrium, kinetic and
thermodynamic studies of analgesic removal by thin coated
activated carbon, J. Eng. Sci., 16 (2020) 47–63.
- S.K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic
environment: a challenge to green chemistry, Chem. Rev.,
107 (2007) 2319–2364.
- M. Carballa, F. Omil, J.M. Lema, M.A. Llompart, C. Garcıa-Jares,
I. Rodrıguez, M. Gomez, T. Ternes, Behavior of pharmaceuticals,
cosmetics and hormones in a sewage treatment plant, Water
Res., 38 (2004) 2918–2926.
- J.L. Tambosi, L.Y. Yamanaka, H.J. José, R. de Fátima Peralta
Muniz Moreira, H.F. Schröder, Recent research data on the
removal of pharmaceuticals from sewage treatment plants
(STP), Quím. Nova, 33 (2010) 411–420.
- F.O. Agunbiade, B. Moodley, Pharmaceuticals as emerging
organic contaminants in umgeni river water system, KwaZulu-
Natal, South Africa, Environ. Monit. Assess., 186 (2014)
7273–7291.
- B.P. Gumbi, B. Moodley, G. Birungi, P.G. Ndungu, Detection
and quantification of acidic drug residues in South African
surface water using gas chromatography-mass spectrometry,
Chemosphere, 168 (2017) 1042–1050.
- V.P. Kasperchik, A.L. Yaskevich, A.V. Bildyukevich, Wastewater
treatment for removal of dyes by coagulation and membrane
processes, Pet. Chem., 52 (2012) 545–556.
- S. Nadupalli, N. Koorbanally, S.B. Jonnalagadda, Chlorine
dioxide-facilitated oxidation of the azo dye amaranth, J. Phys.
Chem. A, 115 (2011) 11682–11688.
- M. Imran, M.M. Iqbal, J. Iqbal, N.S. Shah, Z.U.H. Khan,
B. Murtaza, M. Amjad, S. Ali, M. Rizwan, Synthesis,
characterization and application of novel MnO and CuO
impregnated biochar composites to sequester arsenic (As) from
water: modeling, thermodynamics and reusability, J. Hazard.
Mater., 401 (2021) 123338, doi:10.1016/j.jhazmat.2020.123338.
- Md. Ahmaruzzaman, Adsorption of phenolic compounds
on low-cost adsorbents: a review, Adv. Colloid Interface Sci.,
143 (2008) 48–67.
- A. Bhatnagar, A.K. Jain, A comparative adsorption study with
different industrial wastes as adsorbents for the removal of
cationic dyes from water, J. Colloid Interface Sci., 281 (2005)
49–55.
- A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and
municipal waste materials as potential adsorbents for water
treatment—a review, Chem. Eng. J., 157 (2010) 277–296.
- K.S. Smith, Chapter 7 – Metal Sorption on Mineral Surfaces:
An Overview with Examples Relating to Mineral Deposits,
Reviews in Economic Geology, Volumes 6A and 6B, The
Environmental Geochemistry of Mineral Deposits Part A:
Processes, Techniques, and Health Issues, Part B: Case Studies
and Research Topics, Published by the Society of Economic
Geologists, Inc. (SEG), 1999, pp. 161–182.
- J. Mittal, R. Ahmad, M.O. Ejaz, A Mariyam, A Mittal, A novel,
eco-friendly bio-nanocomposite (Alg-Cst/Kal) for the adsorptive
removal of crystal violet dye from its aqueous solutions, Int.
J. Phytorem., 10 (2021), doi:10.1080/15226514.2021.1977778.
- J. Mittal, A. Mittal, Batch and bulk adsorptive removal of anionic
dye using metal/halide-free ordered mesoporous carbon as
adsorbent, J. Cleaner Prod., 321 (2021) 129060, doi: 10.1016/j.
jclepro.2021.129060.
- A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma,
Fixed-bed adsorption of the dye Chrysoidine R on ordered
mesoporous carbon, Desalination, 229 (2021) 395–400.
- A. Mariyam, A Mittal, Efficient batch and fixed-bed
sequestration of a basic dye using a novel variant of ordered
mesoporous carbon as adsorbent, Arabian J. Chem., 14 (2021)
103186, doi:10.1016/j.arabjc.2021.103186.
- A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma,
Adsorption behaviour of Chrysoidine R dye on a metal/halidefree
variant of ordered mesoporous carbon, Desalination,
223 (2021) 425–433.
- I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis,
T. Tatarchuk, L. Sellaoui, A. Bonilla-Petriciolet,
A. Mittal,
A. Núñez-Delgado, Removal of caffeine, nicotine and amoxicillin
from (waste)waters by various adsorbents. A review,
J. Environ. Manage., 261 (2020) 110236, doi: 10.1016/j.
jenvman.2020.110236.
- J. Mittal, Recent progress in the synthesis of layered double
hydroxides and their application for the adsorptive removal
of dyes: a review, J. Environ. Manage., 295 (2021) 113017,
doi:10.1016/j.jenvman.2021.113017.
- A. Mittal, R. Ahmad, I. Hasan, Iron oxide impregnated dextrin
nanocomposite synthesis and its application for the biosorption
of Cr(VI) ions from aqueous solution, Desalination, 57 (2016)
15133–15145.
- H. Boumediene, A Mittal, J. Mittal, A. Paolone, Synthesis and
characterisation of egg shell (ES) and egg shell with membrane
(ESM) modified by ionic liquids, Chem. Data Collect., 33 (2021)
100717, doi:10.1016/j.cdc.2021.100717.
- V.K. Gupta, S. Agarwal, R. Ahmad, A. Mizzal, J. Mittal,
Sequestration of toxic congo red dye from aqueous solution
using eco-friendly guar gum/activated carbon nanocomposite,
Int. J. Biol. Macromol., 8130 (2020) 33167, doi: 10.1016/j.
ijbiomac.2020.05.025.
- P. Saharan, V. Kumar, J. Mittal, V. Sharma, A.K. Sharma, Efficient
ultrasonic assisted adsorption of organic pollutants employing
bimetallic carbon nanocomposites, Sep. Sci. Technol., 56 (2021)
2895–2908.
- S. Soni, P.K. Bajpai, J. Mittal, C. Arora, Utilisation of cobalt
doped iron based MOF for enhanced removal and a recovery
of methylene blue dye from waste water, J. Mol. Liq., 314 (2020)
113642, doi:10.1016/j.molliq.2020.113642.
- H. Feather, A Remarkable Adsorbent for Dye Removal Chapter
in Book: Green Chemistry for Dyes Removal from Wastewater,
Dr. S.K. Sharma, Ed., Scrivener Publishing LLC, USA, 2015,
pp. 409–457.
- G. Crini, P.M. Badot, Eds., Sorption Processes and Pollution,
PUFC, Besançon, 2010, p. 489.
- G.Y. Kyzas, M. Kostoglou, Green adsorbents for wastewaters:
a critical review, Materials, 7 (2014) 333–364.
- S.D. Khattri, M.K. Singh, Removal of malachite green from
dye wastewater using neem sawdust by adsorption, J. Hazard.
Mater., 167 (2009) 1089–1094.
- T.A Davis, B. Volesky, A. Mucci, A review of the biochemistry of
heavy metal biosorption by brown algae, Water Res., 37 (2003)
4311–4330.
- M. Grassi, G. Kaykioglu, V. Belgiorno, G. Lofrano, Removal
of Emerging Contaminants from Water and Wastewater by
Adsorption Process, G. Lofrano, Ed., Emerging Compounds
Removal from Wastewater, Springer Briefs in Molecular
Science, Springer, Dordrecht, 2012.
- K. Chojnacka, Biosorption of Cr(III) ions by eggshells, J. Hazard.
Mater. B, 121 (2005) 167–173.
- A.G.J. Tacon, Utilisation of chick hatchery waste: the nutritional
characteristics of day-old chicks and egg shells, Agric. Wastes,
4 (1982) 335–343.
- R.B. Christmas, R.H. Harms, Utilization of egg shells and
phosphoric acids as a source of phosphorus and calcium in the
diet of White Leghorn cockerels, Poult. Sci., 55 (1976) 264–267.
- H.A. Hegazi, Removal of heavy metals from wastewater using
agricultural and industrial wastes as adsorbents, HBRC J.,
9 (2013) 276–282.
- V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study
and equilibrium isotherm analysis of Congo Red adsorption by
clay materials, Chem. Eng. J., 148 (2009) 354–364.
- C.H. Zhou, J. Keeling, Fundamental and applied research on
clay minerals: from climate and environment to nanotechnology,
Appl. Clay Sci., 74 (2013) 3–9.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review,
Water Res., 44 (2010) 2997–3027.
- I. Zhu, T. Getting, A review of nitrate reduction using inorganic
materials, Environ. Technol. Rev., 1 (2012) 46–58.
- R. Bhaumik, N.K. Mondal, B. Das, P.G. Roy, K.C. Pal, C. Das,
A. Banerjee, J.K. Datta, Eggshell powder as an adsorbent for
removal of fluoride from aqueous solution: equilibrium, kinetic
and thermodynamic studies, E-J. Chem., 9 (2012) 790401, doi:
10.1155/2012/790401.
- A.V. Borhade, A.S. Kale, Calcined eggshell as a cost effective
material for removal of dyes from aqueous solution, Appl.
Water Sci., 7 (2012) 4255–4268.
- B.Z. Butt, Nanotechnology and Waste Water Treatment,
S. Javad, Ed., Nanoagronomy, Springer, Cham, 2020.
- C. Trois, A. Cibati, South African sands as an alternative to
zero valent iron for arsenic removal from an industrial effluent:
batch experiments, J. Environ. Chem. Eng., 3 (2015) 488–498.
- O.A. Oyetade, V.O. Nyamori, B.S. Martincigh, S.B. Jonnalagadda,
Effectiveness of carbon nanotube–cobalt ferrite nanocomposites
for the adsorption of rhodamine B from aqueous solutions,
RSC Adv., 5 (2015) 22724–22739.
- Y.S. Ho, Removal of copper ions from aqueous solution by
tree fern, Water Res., 37 (2003) 2323–2330.
- J. Lin, L. Wang, Comparison between linear and non-linear
forms of pseudo-first-order and
pseudo-second-order adsorption
kinetic models for the removal of methylene blue by
activated carbon, Front. Environ. Sci. Eng., 3 (2009) 320–324.
- A. Dabrowski, Adsorption—from theory to practice, Adv.
Colloid Interface Sci., 93 (2001) 135–224.
- K.H. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and
thermodynamics of cadmium ion removal by adsorption onto
nanozerovalent iron particles, J. Hazard. Mater., 186 (2010)
458–465.
- K. Vijayaraghavan, R. Balasubramanian, Is biosorption suitable
for decontamination of metal-bearing wastewaters? A critical
review on the state-of-the-art of biosorption processes and
future directions,
J. Environ. Manage., 160 (2015) 283–296.
- N. Ayawei, A.T. Ekubo, D. Wankasi, E.D. Dikio, Adsorption
of Congo red by Ni/Al-CO3: equilibrium, thermodynamic
and kinetic studies, Orient. J. Chem., 31 (2015) 1307–1318.
- T.M. Elmorsi, Equilibrium isotherms and kinetic studies of
removal of methylene blue dye by adsorption onto miswak
leaves as a natural adsorbent, J. Environ. Prot., 2 (2011) 817–827.
- V. Kuppusamy, T. Padmesh, K. Palanivelu, K.V. Manickam,
Biosorption of nickel(II) ions onto Sargassum wightii: application
of two-parameter and three-parameter isotherm models,
J. Hazard. Mater., 133 (2006) 304–308.
- A. Botea-Petcu, S. Tanasescu, V. Varazashvili, N. Lejava,
T. Machaladze, M. Khundadze, F. Maxim, F. Teodorescu,
J. Martynczuk, Z. Yáng, L.J. Gauckler, Thermodynamic data of
Ba0.6Sr0.4Co0.8Fe0.2O3−δ SOFC cathode material, Mater. Res. Bull.,
57 (2014) 184–189.
- L. Shuyan, L. Zhe, H. Xiqiang, W. Bo, S. Wenhui, Electrical and
thermal properties of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ perovskite
oxides, Solid State Ionics, 178 (2007) 417–422.
- S. Zongping, X. Guoxing, T. Jianghua, D. Hui, Y. Weishen, Ba
effect in doped Sr(Co0.8Fe0.2)O3–δ on the phase structure and
oxygen permeation properties of the dense ceramic membranes,
Sep. Purif. Technol., 25 (2001) 419–429.
- S. Trasatti, Electrocatalysis by oxides – attempt at a unifying
approach, J. Electroanal. Chem., 1119 (1980) 125–131.
- W. Zhou, M. Zhao, F. Liang, S.C. Smith, Z. Zhu, High activity
and durability of novel perovskite electrocatalysts for water
oxidation, Mater. Horiz., 2 (2015) 495–501.
- H.D. Lutz, H. Möller, M. Schmidt, Lattice vibration spectra. Part
LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe,
Cd) — IR and Raman spectra, neutron diffraction of Fe(OH)2,
J. Mol. Struct., 328 (1994) 121–132.
- M.K. Johnson, D.B. Powell, R.D. Cannon, Vibrational spectra
of carboxylate complexes—III. Trinuclear ‘basic’ acetates and
formates of chromium(III), iron(III), and other transition metals,
Spectrochim. Acta, Part A, 37 (1981) 995–1006.
- I.A.A. Hamza, B.S. Martincigh, J.C. Ngila, V.O. Nyamori,
Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite, Phys. Chem. Earth,
66 (2013) 157–166.
- Y.S. Ho, G. McKay, Kinetic models for the sorption of dye from
aqueous solution by wood process, Process Saf. Environ. Prot.,
76 (1998) 183–191.
- E. Demirbas, M. Kobya, E. Senturk, T. Ozkan, Adsorption
kinetics for the removal of chromium(VI) from aqueous
solutions on the activated carbons prepared from agricultural
wastes, Water SA, 30 (2004) 533–539.
- S.H. Chien, W.R. Clayton, Application of Elovich equation to
the kinetics of phosphate release and sorption in soils, Soil Sci.
Soc. Am. J., 44 (1980) 265–268.
- R. Krishna, A unified approach to the modelling of intraparticle
diffusion in adsorption processes, Gas Sep. Purif., 7 (1993)
91–104.
- Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Adsorption behaviour
of methylene blue on carbon nanotubes, Bioresour. Technol.,
101 (2010) 3040–3046.
- C.H. Wu, Adsorption of reactive dye onto carbon nanotubes:
equilibrium, kinetics and thermodynamics,
J. Hazard. Mater.,
144 (2007) 93–100.
- S.G. Muntean, M.E. Radulescu-Grad, P. Sfarloaga, Dye adsorbed
on copolymer, possible specific sorbent for metal ions removal,
RSC Adv., 4 (2014) 27354–27362.
- K.S. Moaaz, B. Mariusz, A. Ioannis, A.G. Dimitrios, A novel
nanocomposite of activated serpentine mineral decorated with
magnetic nanoparticles for rapid and effective adsorption of
hazardous cationic dyes: kinetics and equilibrium studies,
Nanomaterials, 10 (2020) 684, doi: 10.3390/nano10040684.
- Z. Zhao, Z. Yang, Y. Hu, J. Li, X. Fan, Multiple functionalization
of multi-walled carbon nanotubes with carboxyl and amino
groups, Appl. Surf. Sci., 276 (2013) 476–481.
- Y. Zhang, H. He, C. Gao, J. Wu, Covalent layer-by-layer
functionalization of multiwalled carbon nanotubes by click
chemistry, Langmuir, 25 (2009) 5814–5824.
- H.M.F. Freundlich, Over the adsorption in solution, Z. Phys.
Chem., 57 (1906) 385–470.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 409 (1918) 1361–1402.
- M.I. Templin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalyst, Acta Phys. Chim. USSR, 12 (1940)
327–356.
- M.M. Dubinin, The potential theory of adsorption of gases and
vapors for adsorbents with energetically non uniform surface,
Chem. Rev., 60 (1960) 235–266.
- J. Toth, State equation of the solid gas interface layer, Acta
Chim. Hungaricae, 69 (1971) 311–317.
- M. Davoundinejad, S.A. Gharbanian, Modelling of adsorption
isotherm of benzoic compounds onto GAC and introducing
three new isotherm models using new concepts of adsorption
effective surface (AEC), Acad. J., 46 (2013) 2263–2275.
- M. Dutta, U. Das, S. Mondal, Adsorption of acetaminophen by
using tea waste derived activated carbon, Int. J. Environ. Sci.,
2 (2015) 270–281.
- D.T. Nguyen, H. Nguyen Tran, R.-S. Juang, N. Duy Dat, F. Tomul,
A. Ivanets, S. Han Woo, A. Hosseini-Bandegharaei, V. Phuong
Nguyen, H.-P. Chao, Adsorption process and mechanism of
acetaminophen onto commercial activated carbon, J. Environ.
Chem. Eng., 6 (2020) 104408, doi: 10.1016/j.jece.2020.104408.
- H.B. Quesada, L.F. Cusioli, C. de O. Bezerra, A.T.A. Baptista,
L. Nishi, R.G. Comes, R. Bergamasco, Acetaminophen
adsorption using a low cost adsorbent prepared from modified
residues of Moringa oleifera Lam. seed husks, J. Chem. Technol.
Biotechnol., 10 (2010) 3147–3157.
- C.A. Rey-Mafull, J.E. Tacoronte, R. Garcia, J. Tobella, J.C. Llópiz,
A. Iglesias, D. Hotza, Comparative study of the adsorption
of acetaminophen on activated carbons in simulated gastric
fluid, SpringerPlus, 48 (2014) 1–12.
- D.M. Juela, Comparison of the adsorption capacity of
acetaminophen on sugarcane bagasse and corn cob by dynamic
simulation, Sustainable Environ. Res., 30 (2020) 23, doi: 10.1186/
s42834-020-00063-7.
- A. Parus, M. Gaj, B. Karbowska, J. Zembrzuska, Investigation of
acetaminophen adsorption with a biosorbent as a purification
method of aqueous solution, Chem. Ecol., 7 (2020) 705–725.
- S.O. Akpotu, B. Moodley, Application of as-synthesized MCM-
41and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and
aspirin from aqueous system, J. Environ. Manage., 209 (2018)
205–215.
- P.W. Atkins, Essentials of Physical Chemistry, 4th ed., Oxford
University Press, Oxford, 2001.
- S. Annamária, H. Éva, C. Martina, F. Attila, The correctness
of Van’t Hoff plots in chiral and achiral chromatography,
J. Chromatogr., A, 1611 (2020) 460594, doi: 10.1016/j.
chroma.2019.460594.
- Y. Liu, Y.J. Liu, Biosorption isotherms, kinetics and
thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.