References

  1. S.S. Muhamad, I. Suzylawati, Equilibrium, kinetic and thermodynamic studies of analgesic removal by thin coated activated carbon, J. Eng. Sci., 16 (2020) 47–63.
  2. S.K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry, Chem. Rev., 107 (2007) 2319–2364.
  3. M. Carballa, F. Omil, J.M. Lema, M.A. Llompart, C. Garcıa-Jares, I. Rodrıguez, M. Gomez, T. Ternes, Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant, Water Res., 38 (2004) 2918–2926.
  4. J.L. Tambosi, L.Y. Yamanaka, H.J. José, R. de Fátima Peralta Muniz Moreira, H.F. Schröder, Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP), Quím. Nova, 33 (2010) 411–420.
  5. F.O. Agunbiade, B. Moodley, Pharmaceuticals as emerging organic contaminants in umgeni river water system, KwaZulu- Natal, South Africa, Environ. Monit. Assess., 186 (2014) 7273–7291.
  6. B.P. Gumbi, B. Moodley, G. Birungi, P.G. Ndungu, Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry, Chemosphere, 168 (2017) 1042–1050.
  7. V.P. Kasperchik, A.L. Yaskevich, A.V. Bildyukevich, Wastewater treatment for removal of dyes by coagulation and membrane processes, Pet. Chem., 52 (2012) 545–556.
  8. S. Nadupalli, N. Koorbanally, S.B. Jonnalagadda, Chlorine dioxide-facilitated oxidation of the azo dye amaranth, J. Phys. Chem. A, 115 (2011) 11682–11688.
  9. M. Imran, M.M. Iqbal, J. Iqbal, N.S. Shah, Z.U.H. Khan, B. Murtaza, M. Amjad, S. Ali, M. Rizwan, Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: modeling, thermodynamics and reusability, J. Hazard. Mater., 401 (2021) 123338, doi:10.1016/j.jhazmat.2020.123338.
  10. Md. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  11. A. Bhatnagar, A.K. Jain, A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water, J. Colloid Interface Sci., 281 (2005) 49–55.
  12. A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review, Chem. Eng. J., 157 (2010) 277–296.
  13. K.S. Smith, Chapter 7 – Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits, Reviews in Economic Geology, Volumes 6A and 6B, The Environmental Geochemistry of Mineral Deposits Part A: Processes, Techniques, and Health Issues, Part B: Case Studies and Research Topics, Published by the Society of Economic Geologists, Inc. (SEG), 1999, pp. 161–182.
  14. J. Mittal, R. Ahmad, M.O. Ejaz, A Mariyam, A Mittal, A novel, eco-friendly bio-nanocomposite (Alg-Cst/Kal) for the adsorptive removal of crystal violet dye from its aqueous solutions, Int. J. Phytorem., 10 (2021), doi:10.1080/15226514.2021.1977778.
  15. J. Mittal, A. Mittal, Batch and bulk adsorptive removal of anionic dye using metal/halide-free ordered mesoporous carbon as adsorbent, J. Cleaner Prod., 321 (2021) 129060, doi: 10.1016/j. jclepro.2021.129060.
  16. A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma, Fixed-bed adsorption of the dye Chrysoidine R on ordered mesoporous carbon, Desalination, 229 (2021) 395–400.
  17. A. Mariyam, A Mittal, Efficient batch and fixed-bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent, Arabian J. Chem., 14 (2021) 103186, doi:10.1016/j.arabjc.2021.103186.
  18. A. Mariyam, J. Mittal, F. Sakina, R.T. Baker, A.K. Sharma, Adsorption behaviour of Chrysoidine R dye on a metal/halidefree variant of ordered mesoporous carbon, Desalination, 223 (2021) 425–433.
  19. I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis, T. Tatarchuk, L. Sellaoui, A. Bonilla-Petriciolet,
    A. Mittal, A. Núñez-Delgado, Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review, J. Environ. Manage., 261 (2020) 110236, doi: 10.1016/j. jenvman.2020.110236.
  20. J. Mittal, Recent progress in the synthesis of layered double hydroxides and their application for the adsorptive removal of dyes: a review, J. Environ. Manage., 295 (2021) 113017, doi:10.1016/j.jenvman.2021.113017.
  21. A. Mittal, R. Ahmad, I. Hasan, Iron oxide impregnated dextrin nanocomposite synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution, Desalination, 57 (2016) 15133–15145.
  22. H. Boumediene, A Mittal, J. Mittal, A. Paolone, Synthesis and characterisation of egg shell (ES) and egg shell with membrane (ESM) modified by ionic liquids, Chem. Data Collect., 33 (2021) 100717, doi:10.1016/j.cdc.2021.100717.
  23. V.K. Gupta, S. Agarwal, R. Ahmad, A. Mizzal, J. Mittal, Sequestration of toxic congo red dye from aqueous solution using eco-friendly guar gum/activated carbon nanocomposite, Int. J. Biol. Macromol., 8130 (2020) 33167, doi: 10.1016/j. ijbiomac.2020.05.025.
  24. P. Saharan, V. Kumar, J. Mittal, V. Sharma, A.K. Sharma, Efficient ultrasonic assisted adsorption of organic pollutants employing bimetallic carbon nanocomposites, Sep. Sci. Technol., 56 (2021) 2895–2908.
  25. S. Soni, P.K. Bajpai, J. Mittal, C. Arora, Utilisation of cobalt doped iron based MOF for enhanced removal and a recovery of methylene blue dye from waste water, J. Mol. Liq., 314 (2020) 113642, doi:10.1016/j.molliq.2020.113642.
  26. H. Feather, A Remarkable Adsorbent for Dye Removal Chapter in Book: Green Chemistry for Dyes Removal from Wastewater, Dr. S.K. Sharma, Ed., Scrivener Publishing LLC, USA, 2015, pp. 409–457.
  27. G. Crini, P.M. Badot, Eds., Sorption Processes and Pollution, PUFC, Besançon, 2010, p. 489.
  28. G.Y. Kyzas, M. Kostoglou, Green adsorbents for wastewaters: a critical review, Materials, 7 (2014) 333–364.
  29. S.D. Khattri, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption, J. Hazard. Mater., 167 (2009) 1089–1094.
  30. T.A Davis, B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae, Water Res., 37 (2003) 4311–4330.
  31. M. Grassi, G. Kaykioglu, V. Belgiorno, G. Lofrano, Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process, G. Lofrano, Ed., Emerging Compounds Removal from Wastewater, Springer Briefs in Molecular Science, Springer, Dordrecht, 2012.
  32. K. Chojnacka, Biosorption of Cr(III) ions by eggshells, J. Hazard. Mater. B, 121 (2005) 167–173.
  33. A.G.J. Tacon, Utilisation of chick hatchery waste: the nutritional characteristics of day-old chicks and egg shells, Agric. Wastes, 4 (1982) 335–343.
  34. R.B. Christmas, R.H. Harms, Utilization of egg shells and phosphoric acids as a source of phosphorus and calcium in the diet of White Leghorn cockerels, Poult. Sci., 55 (1976) 264–267.
  35. H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J., 9 (2013) 276–282.
  36. V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  37. C.H. Zhou, J. Keeling, Fundamental and applied research on clay minerals: from climate and environment to nanotechnology, Appl. Clay Sci., 74 (2013) 3–9.
  38. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  39. I. Zhu, T. Getting, A review of nitrate reduction using inorganic materials, Environ. Technol. Rev., 1 (2012) 46–58.
  40. R. Bhaumik, N.K. Mondal, B. Das, P.G. Roy, K.C. Pal, C. Das, A. Banerjee, J.K. Datta, Eggshell powder as an adsorbent for removal of fluoride from aqueous solution: equilibrium, kinetic and thermodynamic studies, E-J. Chem., 9 (2012) 790401, doi: 10.1155/2012/790401.
  41. A.V. Borhade, A.S. Kale, Calcined eggshell as a cost effective material for removal of dyes from aqueous solution, Appl. Water Sci., 7 (2012) 4255–4268.
  42. B.Z. Butt, Nanotechnology and Waste Water Treatment, S. Javad, Ed., Nanoagronomy, Springer, Cham, 2020.
  43. C. Trois, A. Cibati, South African sands as an alternative to zero valent iron for arsenic removal from an industrial effluent: batch experiments, J. Environ. Chem. Eng., 3 (2015) 488–498.
  44. O.A. Oyetade, V.O. Nyamori, B.S. Martincigh, S.B. Jonnalagadda, Effectiveness of carbon nanotube–cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions, RSC Adv., 5 (2015) 22724–22739.
  45. Y.S. Ho, Removal of copper ions from aqueous solution by tree fern, Water Res., 37 (2003) 2323–2330.
  46. J. Lin, L. Wang, Comparison between linear and non-linear forms of pseudo-first-order and
    pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon, Front. Environ. Sci. Eng., 3 (2009) 320–324.
  47. A. Dabrowski, Adsorption—from theory to practice, Adv. Colloid Interface Sci., 93 (2001) 135–224.
  48. K.H. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nanozerovalent iron particles, J. Hazard. Mater., 186 (2010) 458–465.
  49. K. Vijayaraghavan, R. Balasubramanian, Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions,
    J. Environ. Manage., 160 (2015) 283–296.
  50. N. Ayawei, A.T. Ekubo, D. Wankasi, E.D. Dikio, Adsorption of Congo red by Ni/Al-CO3: equilibrium, thermodynamic and kinetic studies, Orient. J. Chem., 31 (2015) 1307–1318.
  51. T.M. Elmorsi, Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent, J. Environ. Prot., 2 (2011) 817–827.
  52. V. Kuppusamy, T. Padmesh, K. Palanivelu, K.V. Manickam, Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. Hazard. Mater., 133 (2006) 304–308.
  53. A. Botea-Petcu, S. Tanasescu, V. Varazashvili, N. Lejava, T. Machaladze, M. Khundadze, F. Maxim, F. Teodorescu, J. Martynczuk, Z. Yáng, L.J. Gauckler, Thermodynamic data of Ba0.6Sr0.4Co0.8Fe0.2O3−δ SOFC cathode material, Mater. Res. Bull., 57 (2014) 184–189.
  54. L. Shuyan, L. Zhe, H. Xiqiang, W. Bo, S. Wenhui, Electrical and thermal properties of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ perovskite oxides, Solid State Ionics, 178 (2007) 417–422.
  55. S. Zongping, X. Guoxing, T. Jianghua, D. Hui, Y. Weishen, Ba effect in doped Sr(Co0.8Fe0.2)O3–δ on the phase structure and oxygen permeation properties of the dense ceramic membranes, Sep. Purif. Technol., 25 (2001) 419–429.
  56. S. Trasatti, Electrocatalysis by oxides – attempt at a unifying approach, J. Electroanal. Chem., 1119 (1980) 125–131.
  57. W. Zhou, M. Zhao, F. Liang, S.C. Smith, Z. Zhu, High activity and durability of novel perovskite electrocatalysts for water oxidation, Mater. Horiz., 2 (2015) 495–501.
  58. H.D. Lutz, H. Möller, M. Schmidt, Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) — IR and Raman spectra, neutron diffraction of Fe(OH)2, J. Mol. Struct., 328 (1994) 121–132.
  59. M.K. Johnson, D.B. Powell, R.D. Cannon, Vibrational spectra of carboxylate complexes—III. Trinuclear ‘basic’ acetates and formates of chromium(III), iron(III), and other transition metals, Spectrochim. Acta, Part A, 37 (1981) 995–1006.
  60. I.A.A. Hamza, B.S. Martincigh, J.C. Ngila, V.O. Nyamori, Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite, Phys. Chem. Earth, 66 (2013) 157–166.
  61. Y.S. Ho, G. McKay, Kinetic models for the sorption of dye from aqueous solution by wood process, Process Saf. Environ. Prot., 76 (1998) 183–191.
  62. E. Demirbas, M. Kobya, E. Senturk, T. Ozkan, Adsorption kinetics for the removal of chromium(VI) from aqueous solutions on the activated carbons prepared from agricultural wastes, Water SA, 30 (2004) 533–539.
  63. S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44 (1980) 265–268.
  64. R. Krishna, A unified approach to the modelling of intraparticle diffusion in adsorption processes, Gas Sep. Purif., 7 (1993) 91–104.
  65. Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Adsorption behaviour of methylene blue on carbon nanotubes, Bioresour. Technol., 101 (2010) 3040–3046.
  66. C.H. Wu, Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics,
    J. Hazard. Mater., 144 (2007) 93–100.
  67. S.G. Muntean, M.E. Radulescu-Grad, P. Sfarloaga, Dye adsorbed on copolymer, possible specific sorbent for metal ions removal, RSC Adv., 4 (2014) 27354–27362.
  68. K.S. Moaaz, B. Mariusz, A. Ioannis, A.G. Dimitrios, A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes: kinetics and equilibrium studies, Nanomaterials, 10 (2020) 684, doi: 10.3390/nano10040684.
  69. Z. Zhao, Z. Yang, Y. Hu, J. Li, X. Fan, Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups, Appl. Surf. Sci., 276 (2013) 476–481.
  70. Y. Zhang, H. He, C. Gao, J. Wu, Covalent layer-by-layer functionalization of multiwalled carbon nanotubes by click chemistry, Langmuir, 25 (2009) 5814–5824.
  71. H.M.F. Freundlich, Over the adsorption in solution, Z. Phys. Chem., 57 (1906) 385–470.
  72. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 409 (1918) 1361–1402.
  73. M.I. Templin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta Phys. Chim. USSR, 12 (1940) 327–356.
  74. M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically non uniform surface, Chem. Rev., 60 (1960) 235–266.
  75. J. Toth, State equation of the solid gas interface layer, Acta Chim. Hungaricae, 69 (1971) 311–317.
  76. M. Davoundinejad, S.A. Gharbanian, Modelling of adsorption isotherm of benzoic compounds onto GAC and introducing three new isotherm models using new concepts of adsorption effective surface (AEC), Acad. J., 46 (2013) 2263–2275.
  77. M. Dutta, U. Das, S. Mondal, Adsorption of acetaminophen by using tea waste derived activated carbon, Int. J. Environ. Sci., 2 (2015) 270–281.
  78. D.T. Nguyen, H. Nguyen Tran, R.-S. Juang, N. Duy Dat, F. Tomul, A. Ivanets, S. Han Woo, A. Hosseini-Bandegharaei, V. Phuong Nguyen, H.-P. Chao, Adsorption process and mechanism of acetaminophen onto commercial activated carbon, J. Environ. Chem. Eng., 6 (2020) 104408, doi: 10.1016/j.jece.2020.104408.
  79. H.B. Quesada, L.F. Cusioli, C. de O. Bezerra, A.T.A. Baptista, L. Nishi, R.G. Comes, R. Bergamasco, Acetaminophen adsorption using a low cost adsorbent prepared from modified residues of Moringa oleifera Lam. seed husks, J. Chem. Technol. Biotechnol., 10 (2010) 3147–3157.
  80. C.A. Rey-Mafull, J.E. Tacoronte, R. Garcia, J. Tobella, J.C. Llópiz, A. Iglesias, D. Hotza, Comparative study of the adsorption of acetaminophen on activated carbons in simulated gastric fluid, SpringerPlus, 48 (2014) 1–12.
  81. D.M. Juela, Comparison of the adsorption capacity of acetaminophen on sugarcane bagasse and corn cob by dynamic simulation, Sustainable Environ. Res., 30 (2020) 23, doi: 10.1186/ s42834-020-00063-7.
  82. A. Parus, M. Gaj, B. Karbowska, J. Zembrzuska, Investigation of acetaminophen adsorption with a biosorbent as a purification method of aqueous solution, Chem. Ecol., 7 (2020) 705–725.
  83. S.O. Akpotu, B. Moodley, Application of as-synthesized MCM- 41and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system, J. Environ. Manage., 209 (2018) 205–215.
  84. P.W. Atkins, Essentials of Physical Chemistry, 4th ed., Oxford University Press, Oxford, 2001.
  85. S. Annamária, H. Éva, C. Martina, F. Attila, The correctness of Van’t Hoff plots in chiral and achiral chromatography, J. Chromatogr., A, 1611 (2020) 460594, doi: 10.1016/j. chroma.2019.460594.
  86. Y. Liu, Y.J. Liu, Biosorption isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.