References
- Y. Feng, Y. Peng, N. Cui, D. Gong, K. Zhang, Modeling reference
evapotranspiration using extreme learning machine and
generalized regression neural network only with temperature
data, Comput. Electron. Agric., 136 (2017) 71–78.
- H. Sanikhani, O. Kisi, M.R. Nikpour, Y. Dinpashoh, Estimation
of daily pan evaporation using two different adaptive neurofuzzy
computing techniques, Water Resour. Manage., 26 (2012)
4347–4365.
- B. Mohammadi, S. Mehdizadeh, Modeling daily reference
evapotranspiration via a novel approach based on support
vector regression coupled with whale optimization algorithm,
Agric. Water Manage., 237 (2020) 106145, doi: 10.1016/j.
agwat.2020.106145.
- N.K. Tyagi, D.K. Sharma, S.K. Luthra, Determination of
evapotranspiration and crop coefficients of rice and sunflower
with lysimeter, Agric. Water Manage., 45 (2000) 41–54.
- F.J. Chang, L.C. Chang, H.S. Kao, G.R. Wu, Assessing the
effort of meteorological variables for evaporation estimation
by self-organizing map neural network, J. Hydrol., 384 (2010)
118–129.
- D. Skarlatos, I.K. Kalavrouziotis, C.R. Montes, A.J. Melfi,
B.F.F. Pereira, Wastewater reuse in citrus: a fuzzy logic model
for optimum evapotranspiration, Desal. Water Treat., 55 (2015)
315–324.
- N. Ücler, F. Kutlu, Estimating daily pan evaporation data using
adaptive neuro fuzzy inference system: case study within
Van Local Station-Turkey, J. Polytech., 900 (2020) 195–204.
- J. Shiri, W. Dierickx, A. Pour-Ali Baba, S. Neamati,
M.A. Ghorbani, Estimating daily pan evaporation from climatic
data of the State of Illinois, USA using adaptive neuro-fuzzy
inference system (ANFIS) and artificial neural network (ANN),
Hydrol. Res., 42 (2011) 491–502.
- O. Kisi, Applicability of Mamdani and Sugeno fuzzy genetic
approaches for modeling reference evapotranspiration,
J. Hydrol., 504 (2013) 160–170.
- M.K. Goyal, B. Bharti, J. Quilty, J. Adamowski, A. Pandey,
Modeling of daily pan evaporation in sub tropical climates
using ANN, LS-SVR, Fuzzy Logic, and ANFIS, Expert Syst.
Appl., 41 (2014) 5267–5276.
- Y. Feng, N. Cui, D. Gong, Q. Zhang, L. Zhao, Evaluation of
random forests and generalized regression neural networks
for daily reference evapotranspiration modelling, Agric.
Water Manage., 193 (2017) 163–173.
- A.K. Mousa, M.S. Croock, M.N. Abdullah, Fuzzy based
decision support model for irrigation system management, Int.
J. Comput. Appl., 104 (2014) 14–20.
- M.L. Roderick, L.D. Rotstayn, G.D. Farquhar, M.T. Hobbins,
On the attribution of changing pan evaporation, Geophys.
Res. Lett., 34 (2007) 1–6.
- A. Pandey, R. Prasad, V.P. Singh, S.K. Jha, K.K. Shukla, Crop
parameters estimation by fuzzy inference system using X-band
scatterometer data, Adv. Space Res., 51 (2013) 905–911.
- D. Charchousi, V.K. Tsoukala, M.P. Papadopoulou, How
evapotranspiration process may affect the estimation of water
footprint indicator in agriculture?, Desal. Water Treat., 53 (2015)
3234–3243.
- A. Moghaddamnia, M. Ghafari Gousheh, J. Piri, S. Amin,
D. Han, Evaporation estimation using artificial neural networks
and adaptive neuro-fuzzy inference system techniques,
Adv. Water Resour., 32 (2009) 88–97.
- S.D. Khobragade, P. Semwal, A.R. Senthil Kumar, H.C. Nainwal,
Pan coefficients for estimating open-water surface evaporation
for a humid tropical monsoon climate region in India, J. Earth
Syst. Sci., 128 (2019) 1–14.
- S. Karimi, O. Kisi, J. Shiri, O. Makarynskyy, Neuro-fuzzy and
neural network techniques for forecasting sea level in Darwin
Harbor, Australia, Comput. Geosci., 52 (2013) 50–59.
- A. Yarar, M. Onucyildiz, N.K. Copty, Modelling level change
in lakes using neuro-fuzzy and artificial neural networks,
J. Hydrol., 365 (2009) 329–334.
- J. Sobhani, M. Najimi, Numerical study on the feasibility
of dynamic evolving neural-fuzzy inference system for
approximation of compressive strength of dry-cast concrete,
Appl. Soft Comput. J., 24 (2014) 572–584.
- D.K. Roy, A. Lal, K.K. Sarker, K.K. Saha, B. Datta, Optimization
algorithms as training approaches for prediction of reference
evapotranspiration using adaptive neuro fuzzy inference
system, Agric. Water Manage., 255 (2021) 107003, doi: 10.1016/j.
agwat.2021.107003.
- Ö. Kişi, Daily pan evaporation modelling using a neuro-fuzzy
computing technique, J. Hydrol., 329 (2006) 636–646.
- E.E. Başakın, Ö. Ekmekcioğlu, H. Çıtakoğlu, M. Özger,
A new insight to the wind speed forecasting: robust multi-stage
ensemble soft computing approach based on pre-processing
uncertainty assessment, Neural Comput. Appl., 6 (2021)
783–812.
- H. Citakoglu, Comparison of multiple learning artificial
intelligence models for estimation of long-term monthly
temperatures in Turkey, Arabian J. Geosci., 14 (2021) 2131, doi:
10.1007/s12517-021-08484-3.
- E.E. Başakın, Ö. Ekmekcioğlu, M. Özger, N. Altınbaş, L. Şaylan,
Estimation of measured evapotranspiration using datadriven
methods with limited meteorological variables, Ital.
J. Agrometeorol., 2021 (2021) 63–80.