References
- R.H.E.M. Koppelaar, H.P. Weikard, Assessing phosphate rock
depletion and phosphorus recycling options, Global Environ.
Change, 23 (2013) 1454–1466.
- P. Walan, S. Davidsson, S. Johansson, M. Höök, Resources,
conservation, and recycling phosphate rock production
and depletion: regional disaggregated modeling and global
implications, Resour. Conserv. Recycl., 93 (2014) 178–187.
- I.Y.R. Odegard, E. Van der Voet, The future of food—scenarios
and the effect on natural resource use in agriculture in 2050,
Ecol. Econ., 97 (2014) 51–59.
- V. Linehan, S. Thorpe, N. Andrews, Y. Kim, F. Beaini, Food
Demand to 2050: Opportunities for Australian Agriculture,
Algebraic Description of Agrifood Model, ABARES, Canberra,
Australia, 2012.
- R.B. Chowdhury, G.A. Moore, A.J. Weatherley, M. Arora, Key
sustainability challenges for the global phosphorus resource,
their implications for global food security, and options for
mitigation, J. Cleaner Prod., 140 (2017) 945–963.
- A.A. Al-Gheethi, A.N. Efaq, J.D. Bala, I. Norli, M.O. Abdel-
Monem, M.A. Kadir, Removal of pathogenic bacteria from
sewage-treated effluent and biosolids for agricultural purposes,
Appl. Water Sci., 8 (2018) 1–25.
- P.J. Withers, C. Neal, H.P. Jarvie, D.G. Doody, Agriculture and
eutrophication: where do we go from here?, Sustainability,
6 (2014) 5853–5875.
- H. Kroiss, H. Rechberger, L. Egle, Phosphorus in Water Quality
and Waste Management, S. Kumar, Ed., Integrated Waste Management,
IntechOpen Book Series, London, UK, 2011, pp. 181–214.
- R. Bhateria, D. Jain, Water quality assessment of lake water:
a review, Sustainable Water Resour. Manage.,
2 (2016) 161–173.
- R.O. Carey, K.W. Migliaccio, Contribution of wastewater
treatment plant effluents to nutrient dynamics in aquatic
systems: a review, Environ. Manage., 44 (2009) 205–217.
- E. Kavitha, E. Poonguzhali, D. Nanditha, A. Kapoor,
G. Arthanareeswaran, S. Prabhakar, Current status and
future prospects of membrane separation processes for value
recovery from wastewater, Chemosphere, 291 (2021) 132690,
doi: 10.1016/j.chemosphere.2021.132690.
- C.J. Dawson, J. Hilton, Fertiliser availability in a resourcelimited
world: production and recycling of nitrogen and
phosphorus, Food Policy, 36 (2011) S14–S22.
- J.T. Bunce, E. Ndam, I.D. Ofiteru, A. Moore, D.W. Graham,
D.W. Graham, A review of phosphorus removal technologies
and their applicability to small-scale domestic wastewater
treatment systems, 6 (2018) 1–15.
- S. Sengupta, T. Nawaz, J. Beaudry, Nitrogen and phosphorus
recovery from wastewater, Curr. Pollut. Rep.,
1 (2015) 155–166.
- A. Siciliano, C. Limonti, G.M. Curcio, Advances in struvite
precipitation technologies for nutrients removal and recovery
from aqueous waste and wastewater, Sustainability, 12 (2020)
7538, doi: 10.3390/su12187538.
- L. Zeng, X. Li, Nutrient removal from anaerobically digested
cattle manure by struvite precipitation, J. Environ. Eng. Sci.,
5 (2006) 285–294.
- I. Merino-Jimenez, V. Celorrio, D.J. Fermin, J. Greenman,
I. Ieropoulos, Enhanced MFC power production and struvite
recovery by the addition of sea salts to urine, Water Res.,
109 (2017) 46–53.
- A. Hug, K.M. Udert, Struvite precipitation from urine with
electrochemical magnesium dosage, Water Res., 47 (2012)
289–299.
- S. Kiruthika, R. Jeyalakshmi, M.P. Rajesh, Optimization studies
on the production of struvite from human urine–waste into
value, Desal. Water Treat., 155 (2019) 134–144.
- S. Kiruthika, S. Samdavid, R. Jeyalakshmi, M.P. Rajesh,
Investigation of hydrodynamics of inverse fluidized bed reactor
(IFBR) for struvite (NH4MgPO4·6H2O) recovery from urban
wastewater, Chem. Pap., 76 (2021) 361–372.
- C.M. Mehta, D.J. Batstone, Nucleation and growth kinetics of
struvite crystallization, Water Res., 47 (2013) 2890–2900.
- K.S. Le Corre1, E. Valsami-Jones, P. Hobbs, B. Jefferson,
S.A. Parsons, Struvite crystallisation and recovery using a
stainless steel structure as a seed material, Water Res., 41 (2007)
2449–2456.
- K. Suzuki, Y. Tanaka, K. Kuroda, D. Hanajima, Y. Fukumoto,
T. Yasuda, M. Waki, Removal and recovery of phosphorous
from swine wastewater by demonstration crystallization
reactor and struvite accumulation device, Bioresour. Technol.,
98 (2007) 1573–1578.
- M.I.H. Bhuiyan, D.S. Mavinic, F.A. Koch, Thermal decomposition
of struvite and its phase transition, Chemosphere, 70 (2008)
1347–1356.
- C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of
organic pollutants for the wastewater treatment: direct and
indirect processes, Chem. Soc. Rev., 35 (2006) 1324–1340.
- S.P.S. Badwal, S.S. Giddey, C. Munnings, A.I. Bhatt,
A.F. Hollenkamp, Emerging electrochemical energy conversion
and storage technologies, Front. Chem., 2 (2014) 79, doi: 10.3389/fchem.2014.00079.
- D.J. Kruk, M. Elektorowicz, J.A. Oleszkiewicz, Struvite
precipitation and phosphorus removal using magnesium
sacrificial anode, Chemosphere, 101 (2014) 28−33.
- S. Ben Moussa, G. Maurin, C. Gabrielli, M.B. Amor, Electrochemical
precipitation of struvite, Electrochem.
Solid-State
Lett., 9 (2006) C97−C101.
- P. Ledezma, P. Kuntke, C.J.N. Buisman, J. Keller, S. Freguia,
Source-separated urine opens golden opportunities for
microbial electrochemical technologies, Trends Biotechnol.,
33 (2015) 214−220.
- A. Hug, K.M. Udert, Struvite precipitation from urine with
electrochemical
magnesium dosage, Water Res., 47 (2013)
289−299.
- X. Zhou, Y. Chen, An integrated process for struvite
electrochemical precipitation and ammonia oxidation of sludge
alkaline hydrolysis supernatant, Environ. Sci. Pollut. Res.,
26 (2019) 2435−2444.
- A. Dura, C.B. Breslin, Electrocoagulation using aluminium
anodes activated with Mg, In and Zn alloying elements,
J. Hazard. Mater., 366 (2019) 39−45.
- B.E. Logan, M.J. Wallack, K.Y. Kim, W. He, Y. Feng, P.E. Saikaly,
Assessment of microbial fuel cell configurations and power
densities, Environ. Sci. Technol. Lett., 2 (2015) 206–214.
- S.F. Ketep, A. Bergel, A. Calmet, B. Erable, Stainless steel
foam increases the current produced by microbial bioanodes
in bioelectrochemical systems, Energy Environ. Sci., 7 (2014)
1633–1637.
- W.L. Chou, C.T. Wang, K.Y. Huang, Effect of operating parameters
on indium(III) ion removal by iron electrocoagulation and
evaluation of specific energy consumption, J. Hazard. Mater.,
167 (2009) 467–474.
- C. Santoro, I. Ieropoulos, J. Greenman, P. Cristiani, T. Vadas,
A. Mackay, B. Li, Power generation and contaminant removal in
single chamber microbial fuel cells (SCMFCs) treating human
urine, Int. J. Hydrogen Energy, 38 (2015) 11543–11551.
- K. Hirooka, O. Ichihashi, Phosphorus recovery from artificial
wastewater by microbial fuel cell and its effect on power
generation, Bioresour. Technol., 137 (2013) 368–375.
- O. Ichihashi, K. Hirooka, Removal and recovery of phosphorus
as struvite from swine wastewater using microbial fuel cell,
Bioresour. Technol., 114 (2012) 303–307.
- J. You, J. Greenman, C. Melhuish, I. Ieropoulos, Electricity generation
and struvite recovery from human urine using microbial
fuel cells, J. Chem. Technol. Biotechnol., 91 (2016) 647–654.
- F. Fischer, C. Bastian, M. Happe, E. Mabillard, N. Schmidt,
Microbial fuel cell enables phosphate recovery from digested
sewage sludge as struvite, Bioresour. Technol., 102 (2011)
5824–5830.
- I. Merino-Jimenez, V. Celorrio, D.J. Fermin, J. Greenman,
I. Ieropoulos, Enhanced MFC power production and struvite
recovery by the addition of sea salts to urine, Water Res.,
109 (2017) 46–53.
- Y. Ye, H.H. Ngo, W. Guo, Y. Liu, S.W. Chang, D.D. Nguyen,
J. Ren, Y. Liu, X. Zhang, Feasibility study on a double chamber
microbial fuel cell for nutrient recovery from municipal
wastewater, Chem. Eng. J., 358 (2019) 236–242.
- S. Kiruthika, R. Jeyalakshmi, M.P. Rajesh, Struvite recovery
from human urine in inverse fluidized bed reactor and
evaluation of its fertilizing potential on the growth of Arachis
hypogaea, J. Environ. Chem. Eng., 9 (2021) 104965, doi: 10.1016/j.
jece.2020.104965.
- Q. Li, S. Wang, L. Wang, L. Zhang, X. Wan, Z. Sun, The recovery
of phosphorus from acidic ultra-high phosphorous wastewater
by the struvite crystallization, Water, 12 (2020) 946, doi: 10.3390/w12040946.
- N. Kumar, P. Singh, S. Kumar, Physical, X-ray diffraction and
scanning electron microscopic studies of uroliths, Indian J.
Biochem. Biophys., 43 (2006) 226–232.
- M.A.P. Manzoor, M. Mujeeburahiman, S. Ram, P.D. Rekha,
Investigation on growth and morphology of in vitro generated
struvite crystals, Biocatal. Agric. Biotechnol., 17 (2019) 566–570.
- A. Adnan, D.S. Mavinic, F.A. Koch, Pilot-scale study of
phosphorus recovery through struvite crystallization examining
the process feasibility, J. Environ. Eng. Sci., 2 (2003)
315–324.
- C.C.Wang, X.D. Hao, G.S. Guo, M.C.M. Van Loosdrecht,
Formation of pure struvite at neutral pH by electrochemical
deposition, Chem. Eng. J., 159 (2015) 280–283.
- R.D. Cusick, M.L. Ullery, B.A. Dempsey, B.E. Logan,
Electrochemical struvite precipitation from digestate with a
fluidized bed cathode microbial electrolysis cell, Water Res.,
54 (2014) 297–306.
- C.T. Wang, W.L. Chou, Y.M. Kuo, Removal of COD from
laundry wastewater by electrocoagulation/electroflotation,
J. Hazard. Mater., 164 (2009) 81–86.
- L. Li, Y. Liu, Ammonia removal in electrochemical oxidation:
mechanism and pseudo-kinetics, J. Hazard. Mater., 161 (2009)
1010–1016.
- O. Abdelwahab, N.K. Amin, E.Z. El-ashtoukhy, Electrochemical
removal of phenol from oil refinery wastewater, J. Hazard.
Mater., 163 (2009) 711–716.
- M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, A solubility and
thermodynamic study of struvite, Environ. Technol., 28 (2007)
1015–1026.
- S.I. Lee, S.Y. Weon, C.W. Lee, B. Koopman, Removal of nitrogen
and phosphate from wastewater by addition of bittern,
Chemosphere, 51 (2003) 265–271.
- U. Ghimire, M. Jang, S.P. Jung, D. Park, S.J. Park, H. Yu,
S.E. Oh, Electrochemical removal of ammonium nitrogen and
COD of domestic wastewater using platinum coated titanium
as an anode electrode, Energies, 12 (2019) 883, doi: 10.3390/
en12050883.
- A. Rezagama, M. Hibbaan, M.A. Budihardjo, The process of
removing nitrogen by using tubular plastic media, 2508 (2017)
4915–4922.
- A.R. Purwono, M. Hibbaan, M.A. Budihardjo, Ammonianitrogen
(NH3–N) and ammonium-nitrogen (NH4+–N)
equilibrium on the process of removing nitrogen by using
tubular plastic media, J. Mater. Environ. Sci., 8 (2017) 4915–4922.
- Y. Vanlangendonck, D. Corbisier, A. Van Lierde, Influence of
operating conditions on the ammonia electro-oxidation rate in
wastewaters from power plants (ELONITATM technique), Water
Res., 39 (2005) 3028–3034.
- M. Darwish, A. Aris, M.H. Puteh, M.Z. Abideen, M.N. Othman,
Ammonium-nitrogen recovery from wastewater by struvite
crystallization technology, Sep. Purif. Rev., 45 (2016) 261–274.
- P. Seruga, M. Krzywonos, J. Pyżanowska, A. Urbanowska,
H. Pawlak-Kruczek, L. Niedźwiecki, Removal of ammonia
from the municipal waste treatment effluents using natural
minerals, Molecules, 24 (2019) 3633, doi: 10.3390/molecules
24203633
- Y. Liu, L. Li, R. Goel, Kinetic study of electrolytic ammonia
removal using Ti/IrO2 as anode under different experimental
conditions, J. Hazard. Mater., 167 (2009) 959–965.
- F. Bouamra, N. Drouiche, D. Si, H. Lounici, Treatment of water
loaded with orthophosphate by electrocoagulation, Procedia
Eng., 33 (2012) 155–162.
- Joint Committee for Powder Diffraction Standards Reference
Card Number 20–0685.
- V.B. Suryawanshi, R.T. Chaudhari, Synthesis and characterization
of struvite-k crystals by agar gel,
J. Crystallization Process
Technol., 4 (2014) 212, doi: 10.4236/jcpt.2014.44026.
- X. Sun, J. Ouyang, F. Wang, Y. Xie, Formation mechanism of
magnesium ammonium phosphate stones: a component
analysis of urinary nanocrystallites, J. Nanomater., 2015 (2015)
498932, doi:10.1155/2015/498932.