References

  1. R.H.E.M. Koppelaar, H.P. Weikard, Assessing phosphate rock depletion and phosphorus recycling options, Global Environ. Change, 23 (2013) 1454–1466.
  2. P. Walan, S. Davidsson, S. Johansson, M. Höök, Resources, conservation, and recycling phosphate rock production and depletion: regional disaggregated modeling and global implications, Resour. Conserv. Recycl., 93 (2014) 178–187.
  3. I.Y.R. Odegard, E. Van der Voet, The future of food—scenarios and the effect on natural resource use in agriculture in 2050, Ecol. Econ., 97 (2014) 51–59.
  4. V. Linehan, S. Thorpe, N. Andrews, Y. Kim, F. Beaini, Food Demand to 2050: Opportunities for Australian Agriculture, Algebraic Description of Agrifood Model, ABARES, Canberra, Australia, 2012.
  5. R.B. Chowdhury, G.A. Moore, A.J. Weatherley, M. Arora, Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation, J. Cleaner Prod., 140 (2017) 945–963.
  6. A.A. Al-Gheethi, A.N. Efaq, J.D. Bala, I. Norli, M.O. Abdel- Monem, M.A. Kadir, Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes, Appl. Water Sci., 8 (2018) 1–25.
  7. P.J. Withers, C. Neal, H.P. Jarvie, D.G. Doody, Agriculture and eutrophication: where do we go from here?, Sustainability, 6 (2014) 5853–5875.
  8. H. Kroiss, H. Rechberger, L. Egle, Phosphorus in Water Quality and Waste Management, S. Kumar, Ed., Integrated Waste Management, IntechOpen Book Series, London, UK, 2011, pp. 181–214.
  9. R. Bhateria, D. Jain, Water quality assessment of lake water: a review, Sustainable Water Resour. Manage.,
    2 (2016) 161–173.
  10. R.O. Carey, K.W. Migliaccio, Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review, Environ. Manage., 44 (2009) 205–217.
  11. E. Kavitha, E. Poonguzhali, D. Nanditha, A. Kapoor, G. Arthanareeswaran, S. Prabhakar, Current status and future prospects of membrane separation processes for value recovery from wastewater, Chemosphere, 291 (2021) 132690, doi: 10.1016/j.chemosphere.2021.132690.
  12. C.J. Dawson, J. Hilton, Fertiliser availability in a resourcelimited world: production and recycling of nitrogen and phosphorus, Food Policy, 36 (2011) S14–S22.
  13. J.T. Bunce, E. Ndam, I.D. Ofiteru, A. Moore, D.W. Graham, D.W. Graham, A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, 6 (2018) 1–15.
  14. S. Sengupta, T. Nawaz, J. Beaudry, Nitrogen and phosphorus recovery from wastewater, Curr. Pollut. Rep.,
    1 (2015) 155–166.
  15. A. Siciliano, C. Limonti, G.M. Curcio, Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater, Sustainability, 12 (2020) 7538, doi: 10.3390/su12187538.
  16. L. Zeng, X. Li, Nutrient removal from anaerobically digested cattle manure by struvite precipitation, J. Environ. Eng. Sci., 5 (2006) 285–294.
  17. I. Merino-Jimenez, V. Celorrio, D.J. Fermin, J. Greenman, I. Ieropoulos, Enhanced MFC power production and struvite recovery by the addition of sea salts to urine, Water Res., 109 (2017) 46–53.
  18. A. Hug, K.M. Udert, Struvite precipitation from urine with electrochemical magnesium dosage, Water Res., 47 (2012) 289–299.
  19. S. Kiruthika, R. Jeyalakshmi, M.P. Rajesh, Optimization studies on the production of struvite from human urine–waste into value, Desal. Water Treat., 155 (2019) 134–144.
  20. S. Kiruthika, S. Samdavid, R. Jeyalakshmi, M.P. Rajesh, Investigation of hydrodynamics of inverse fluidized bed reactor (IFBR) for struvite (NH4MgPO4·6H2O) recovery from urban wastewater, Chem. Pap., 76 (2021) 361–372.
  21. C.M. Mehta, D.J. Batstone, Nucleation and growth kinetics of struvite crystallization, Water Res., 47 (2013) 2890–2900.
  22. K.S. Le Corre1, E. Valsami-Jones, P. Hobbs, B. Jefferson, S.A. Parsons, Struvite crystallisation and recovery using a stainless steel structure as a seed material, Water Res., 41 (2007) 2449–2456.
  23. K. Suzuki, Y. Tanaka, K. Kuroda, D. Hanajima, Y. Fukumoto, T. Yasuda, M. Waki, Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresour. Technol., 98 (2007) 1573–1578.
  24. M.I.H. Bhuiyan, D.S. Mavinic, F.A. Koch, Thermal decomposition of struvite and its phase transition, Chemosphere, 70 (2008) 1347–1356.
  25. C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev., 35 (2006) 1324–1340.
  26. S.P.S. Badwal, S.S. Giddey, C. Munnings, A.I. Bhatt, A.F. Hollenkamp, Emerging electrochemical energy conversion and storage technologies, Front. Chem., 2 (2014) 79, doi: 10.3389/fchem.2014.00079.
  27. D.J. Kruk, M. Elektorowicz, J.A. Oleszkiewicz, Struvite precipitation and phosphorus removal using magnesium sacrificial anode, Chemosphere, 101 (2014) 28−33.
  28. S. Ben Moussa, G. Maurin, C. Gabrielli, M.B. Amor, Electrochemical precipitation of struvite, Electrochem.
    Solid-State Lett., 9 (2006) C97−C101.
  29. P. Ledezma, P. Kuntke, C.J.N. Buisman, J. Keller, S. Freguia, Source-separated urine opens golden opportunities for microbial electrochemical technologies, Trends Biotechnol., 33 (2015) 214−220.
  30. A. Hug, K.M. Udert, Struvite precipitation from urine with electrochemical magnesium dosage, Water Res., 47 (2013) 289−299.
  31. X. Zhou, Y. Chen, An integrated process for struvite electrochemical precipitation and ammonia oxidation of sludge alkaline hydrolysis supernatant, Environ. Sci. Pollut. Res., 26 (2019) 2435−2444.
  32. A. Dura, C.B. Breslin, Electrocoagulation using aluminium anodes activated with Mg, In and Zn alloying elements, J. Hazard. Mater., 366 (2019) 39−45.
  33. B.E. Logan, M.J. Wallack, K.Y. Kim, W. He, Y. Feng, P.E. Saikaly, Assessment of microbial fuel cell configurations and power densities, Environ. Sci. Technol. Lett., 2 (2015) 206–214.
  34. S.F. Ketep, A. Bergel, A. Calmet, B. Erable, Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems, Energy Environ. Sci., 7 (2014) 1633–1637.
  35. W.L. Chou, C.T. Wang, K.Y. Huang, Effect of operating parameters on indium(III) ion removal by iron electrocoagulation and evaluation of specific energy consumption, J. Hazard. Mater., 167 (2009) 467–474.
  36. C. Santoro, I. Ieropoulos, J. Greenman, P. Cristiani, T. Vadas, A. Mackay, B. Li, Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine, Int. J. Hydrogen Energy, 38 (2015) 11543–11551.
  37. K. Hirooka, O. Ichihashi, Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation, Bioresour. Technol., 137 (2013) 368–375.
  38. O. Ichihashi, K. Hirooka, Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell, Bioresour. Technol., 114 (2012) 303–307.
  39. J. You, J. Greenman, C. Melhuish, I. Ieropoulos, Electricity generation and struvite recovery from human urine using microbial fuel cells, J. Chem. Technol. Biotechnol., 91 (2016) 647–654.
  40. F. Fischer, C. Bastian, M. Happe, E. Mabillard, N. Schmidt, Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite, Bioresour. Technol., 102 (2011) 5824–5830.
  41. I. Merino-Jimenez, V. Celorrio, D.J. Fermin, J. Greenman, I. Ieropoulos, Enhanced MFC power production and struvite recovery by the addition of sea salts to urine, Water Res., 109 (2017) 46–53.
  42. Y. Ye, H.H. Ngo, W. Guo, Y. Liu, S.W. Chang, D.D. Nguyen, J. Ren, Y. Liu, X. Zhang, Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater, Chem. Eng. J., 358 (2019) 236–242.
  43. S. Kiruthika, R. Jeyalakshmi, M.P. Rajesh, Struvite recovery from human urine in inverse fluidized bed reactor and evaluation of its fertilizing potential on the growth of Arachis hypogaea, J. Environ. Chem. Eng., 9 (2021) 104965, doi: 10.1016/j. jece.2020.104965.
  44. Q. Li, S. Wang, L. Wang, L. Zhang, X. Wan, Z. Sun, The recovery of phosphorus from acidic ultra-high phosphorous wastewater by the struvite crystallization, Water, 12 (2020) 946, doi: 10.3390/w12040946.
  45. N. Kumar, P. Singh, S. Kumar, Physical, X-ray diffraction and scanning electron microscopic studies of uroliths, Indian J. Biochem. Biophys., 43 (2006) 226–232.
  46. M.A.P. Manzoor, M. Mujeeburahiman, S. Ram, P.D. Rekha, Investigation on growth and morphology of in vitro generated struvite crystals, Biocatal. Agric. Biotechnol., 17 (2019) 566–570.
  47. A. Adnan, D.S. Mavinic, F.A. Koch, Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility, J. Environ. Eng. Sci., 2 (2003) 315–324.
  48. C.C.Wang, X.D. Hao, G.S. Guo, M.C.M. Van Loosdrecht, Formation of pure struvite at neutral pH by electrochemical deposition, Chem. Eng. J., 159 (2015) 280–283.
  49. R.D. Cusick, M.L. Ullery, B.A. Dempsey, B.E. Logan, Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell, Water Res., 54 (2014) 297–306.
  50. C.T. Wang, W.L. Chou, Y.M. Kuo, Removal of COD from laundry wastewater by electrocoagulation/electroflotation, J. Hazard. Mater., 164 (2009) 81–86.
  51. L. Li, Y. Liu, Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics, J. Hazard. Mater., 161 (2009) 1010–1016.
  52. O. Abdelwahab, N.K. Amin, E.Z. El-ashtoukhy, Electrochemical removal of phenol from oil refinery wastewater, J. Hazard. Mater., 163 (2009) 711–716.
  53. M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, A solubility and thermodynamic study of struvite, Environ. Technol., 28 (2007) 1015–1026.
  54. S.I. Lee, S.Y. Weon, C.W. Lee, B. Koopman, Removal of nitrogen and phosphate from wastewater by addition of bittern, Chemosphere, 51 (2003) 265–271.
  55. U. Ghimire, M. Jang, S.P. Jung, D. Park, S.J. Park, H. Yu, S.E. Oh, Electrochemical removal of ammonium nitrogen and COD of domestic wastewater using platinum coated titanium as an anode electrode, Energies, 12 (2019) 883, doi: 10.3390/ en12050883.
  56. A. Rezagama, M. Hibbaan, M.A. Budihardjo, The process of removing nitrogen by using tubular plastic media, 2508 (2017) 4915–4922.
  57. A.R. Purwono, M. Hibbaan, M.A. Budihardjo, Ammonianitrogen (NH3–N) and ammonium-nitrogen (NH4+–N) equilibrium on the process of removing nitrogen by using tubular plastic media, J. Mater. Environ. Sci., 8 (2017) 4915–4922.
  58. Y. Vanlangendonck, D. Corbisier, A. Van Lierde, Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITATM technique), Water Res., 39 (2005) 3028–3034.
  59. M. Darwish, A. Aris, M.H. Puteh, M.Z. Abideen, M.N. Othman, Ammonium-nitrogen recovery from wastewater by struvite crystallization technology, Sep. Purif. Rev., 45 (2016) 261–274.
  60. P. Seruga, M. Krzywonos, J. Pyżanowska, A. Urbanowska, H. Pawlak-Kruczek, L. Niedźwiecki, Removal of ammonia from the municipal waste treatment effluents using natural minerals, Molecules, 24 (2019) 3633, doi: 10.3390/molecules 24203633
  61. Y. Liu, L. Li, R. Goel, Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions, J. Hazard. Mater., 167 (2009) 959–965.
  62. F. Bouamra, N. Drouiche, D. Si, H. Lounici, Treatment of water loaded with orthophosphate by electrocoagulation, Procedia Eng., 33 (2012) 155–162.
  63. Joint Committee for Powder Diffraction Standards Reference Card Number 20–0685.
  64. V.B. Suryawanshi, R.T. Chaudhari, Synthesis and characterization of struvite-k crystals by agar gel,
    J. Crystallization Process Technol., 4 (2014) 212, doi: 10.4236/jcpt.2014.44026.
  65. X. Sun, J. Ouyang, F. Wang, Y. Xie, Formation mechanism of magnesium ammonium phosphate stones: a component analysis of urinary nanocrystallites, J. Nanomater., 2015 (2015) 498932, doi:10.1155/2015/498932.