References
- L.A.H.M. Verheijen, D. Weirsema, L.W. Hwshoffpol, J. Dewit,
Live Stock and the Environment: Finding a Balance Management
of Waste from Animal Product Processing, International
Agriculture Centre, Wageningen,
The Netherlands, 1996.
- R. Ganesh, G. Balaji, R.A. Ramanujam, Biodegradation of tannery
wastewater using sequencing batch reactor—respirometric
assessment, Bioresour. Technol., 97 (2006) 1815–1821.
- A. Malviya, D. Jaspal, Artificial intelligence as an upcoming
technology in wastewater treatment:
a comprehensive review,
Environ. Technol. Rev., 10 (2021) 177–187.
- M. Bagheri, S.A. Mirbhageri, M. Ehteshami, Modeling of a
sequencing batch reactor treating municipal wastewater using
multi-layer perceptron and radial basis function artificial
neural networks, Process. Saf. Environ., 93 (2015) 111–123.
- P. Bajpai, A. Mehna, P.K. Bajpai, Decolorization of Kraft bleach
plant effluent with the white rot fungus Trametes versicolor,
Process Biochem., 28 (1993) 377–384.
- M. Bongards, Improving the efficiency of a wastewater
treatment plant by fuzzy control and neural networks, Water
Sci. Technol., 43 (2001) 189–196.
- L. Govindarajan, Optimal Design of Reactors, Ph.D. Dissertation,
Annamalai University, India, 2005.
- M. Hack, M. Kohne, Estimation of wastewater process
parameters using neural networks, Water Sci. Technol.,
33 (1996) 101–115.
- Y. Hamamoto, S. Tabata, Y. Okubo, Development of the
intermittent cyclic process for simultaneous nitrogen and
phosphorus removal, Water Sci. Technol., 35 (1999) 145–152.
- M. Huggi, S.R. Mise, Ann model of wastewater treatment
process, Int. J. Adv. Res. Eng. Technol., 10 (2019) 1–10.
- D.S. Manu, A.K. Thalla, Artificial intelligence models for
predicting the performance of biological wastewater treatment
plant in the removal of Kjeldahl nitrogen from wastewater,
Appl. Water Sci., 7 (2017) 3783–3791.
- K. Mehrotra, C.K. Mohan, S. Ranka, Elements of Artificial
Neural Networks Complex Adaptive Systems, MIT Press, USA,
1997.
- E. Molga, R. Ski. Cherba, L. Szpyrkowicz, Modeling of an
industrial full scale plant for biological treatment of textile
wastewaters: application of neural networks, Ind. Eng. Chem.
Res., 45 (2006) 1039–1046.
- Y. Mustafa, A.I. Alwared, G. Majeed, The use of artificial
neural network (ANN) for the prediction and simulation of oil
degradation in wastewater by AOP, Environ. Sci. Pollut. Res.,
21 (2014) 7530–7537.
- V. Nourani, G. Elkiran, SI. Abba, Wastewater treatment plant
performance analysis using artificial intelligence – an ensemble
approach, Water Sci. Technol., 78 (2018) 2064–2076.
- K.P. Oliveira-Esquerre, M. Mori, R.E. Bruns, Simulation of an
industrial wastewater treatment plant using artificial neural
networks and principal components analysis, Braz. J. Chem.
Eng., 19 (2002) 365–370.
- A.R. Picos-Benítez, B.L. Martínez-Vargas, S.M. Duron-Torres,
The use of artificial intelligence models in the prediction of
optimum operational conditions for the treatment of dye
wastewaters with similar structural characteristics, Process Saf.
Environ., 143 (2020) 36–44.
- M. Ghaedi, A. Ansari, F. Bahari, A.M. Ghaedi, A. Vafaei, A hybrid
artificial neural network and particle swarm optimization
for prediction of removal of hazardous dye brilliant green
from aqueous solution using zinc sulfide nanoparticle loaded
on activated carbon, Spectrochim. Acta, Part A, 137 (2015)
1004–1015.
- D. Reena, J. Sureshkumar, AI based control approach for
membrane bioreactor in sewage water treatment, Int. J. Res.
Eng. Technol., 3 (2014) 354–359.
- J.P. Steyer, C. Pelayo-Ortiz, V. Gonzalez-Alvarez, Neural
network modelling of a depollution process, Bioprocess Eng.,
23 (2000) 727–730.
- H.A. Zaqoot, M. Hamada, Application of artificial neural
networks for the prediction of Gaza wastewater treatment
plant performance-Gaza strip, J. Appl. Res. Water Wastewater,
5 (2018) 399–406.
- P. Das, A. Debnath, Reactive orange 12 dye adsorption onto
magnetically separable CaFe2O4 nanoparticles synthesized by
simple chemical route: kinetic, isotherm and neural network
modeling, Water Pract. Technol., 16 (2021) 1141–1158.
- K. Murugan, S.A. Al-Sohaibani, Biocompatible removal of
tannin and associated color from tannery effluent using the
biomass and tannin acyl hydrolase (E.C.3.1.1.20) enzymes of
mango industry solid waste isolate Aspergillus candidus MTTC
9628, Res. J. Microbiol., 5 (2010) 262–271.
- M. Bhowmik, K. Deb, A. Debnath, B. Saha, Mixed phase
Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of
methyl orange dye: neural network modeling and response
surface methodology optimization, Appl. Organomet. Chem.,
32 (2017) e4186.
- R. Mohammadi, H. Eskandarloo, M. Mohammadi, Application
of artificial neural network (ANN) for modeling of dyes
decolorization by Sn/Zn–TiO2 nanoparticles, Desal. Water
Treat., 55 (2014) 1922–1933.
- A.C. Elekli, S.S. Birecikligil, F. Geyik, H. Bozkurt, Prediction
of removal efficiency of Lanaset Red G on walnut husk using
artificial neural network model, Bioresour. Technol., 103 (2012)
64–70.
- A. Debnath, K. Deb, K. Kumar Chattopadhyay, B. Saha, Methyl
orange adsorption onto simple chemical route synthesized
crystalline α-Fe2O3 nanoparticles: kinetic, equilibrium isotherm,
and neural network modeling, Desal. Water Treat., 57 (2016)
13549–13560.
- N.H. Singh, K. Kezo, A. Debnath, B. Saha, Enhanced adsorption
performance of a novel Fe‐Mn‐Zr metal oxide nanocomposite
adsorbent for anionic dyes from binary dye mix: Response
surface optimization and neural network modeling, Appl.
Organomet. Chem., 32 (2018) e4165.