References

  1. J.L. Parks, M. Edwards, Precipitative removal of As, Ba, B, Cr, Sr, and V using sodium carbonate, J. Environ. Eng., 132 (2006) 489–496.
  2. L. Wu, G. Zhang, Q. Wang, L. Hou, P. Gu, Removal of strontium from liquid waste using a hydraulic pellet
    co-precipitation microfiltration (HPC-MF) process, Desalination, 349 (2014) 31–38.
  3. G. Zakrzewska-Kołtuniewicz, Nuclear Waste Processing: Pressure-Driven Membrane Processes, E. Drioli,
    L. Giorno, Eds., Encyclopedia of Membranes, Springer, Berlin, Heidelberg, 2015, pp. 1–3.
  4. G. Gurboga, H. Tel, Preparation of TiO2-SiO2 mixed gel spheres for strontium adsorption, J. Hazard. Mater., 120 (2005) 135–142.
  5. A.J. Rabideau, J. Van Benschoten, A. Patel, K. Bandilla, Performance assessment of a zeolite treatment wall for removing Sr-90 from groundwater, J. Contam. Hydrol., 79 (2005) 1–24.
  6. W. Guan, J. Pan, H. Ou, X. Wang, X. Zou, W. Hu, C. Li, X. Wu, Removal of strontium(II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: equilibrium, kinetics and thermodynamics, Chem. Eng. J., 167 (2011) 215–222.
  7. R.O. Abdel Rahman, H.A. Ibrahium, Y.-T. Hung, Liquid radioactive wastes treatment: a review, Water, 3 (2011) 551–565.
  8. D. Rana, T. Matsuura, M.A. Kassim, A.F. Ismail, Radioactive decontamination of water by membrane processes – a review, Desalination, 321 (2013) 77–92.
  9. R.D. Ambashta, M.E.T. Sillanpää, Membrane purification in radioactive waste management: a short review, J. Environ. Radioact., 105 (2012) 76–84.
  10. H. Ed, L. Kw, C. Kh, C. Sj, K. Sh, Y. Ch, L. Ch, Effect of precipitation and complexation on nanofiltration of strontiumcontaining nuclear wastewater, Desalination, 147 (2002) 289–294.
  11. D.K. Gupta, C. Walther, Impact of Cesium on Plants and the Environment, Springer International Publishing, Switzerland, 2017.
  12. R. Jalali-Rad, H. Ghafourian, Y. Asef, S.T. Dalir, M.H. Sahafipour, B.M. Gharanjik, Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications, J. Hazard. Mater., 116 (2004) 125–134.
  13. J. Wang, S. Zhuang, Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes, Nucl. Eng. Technol., 52 (2020) 328–336.
  14. D. Alby, C. Charnay, M. Heran, B. Prelot, J. Zajac, Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity—a review, J. Hazard. Mater., 344 (2018) 511–530.
  15. T. Nakajima, Y. Ninomiya, M. Nenoi, Radiation-induced reactions in the liver—modulation of radiation effects by lifestyle-related factors, Int. J. Mol. Sci., 19 (2018) 3855, doi: 10.3390/ijms19123855.
  16. V. Pacary, Y. Barré, E. Plasari, Method for the prediction of nuclear waste solution decontamination by coprecipitation of strontium ions with barium sulphate using the experimental data obtained
    in non-radioactive environment, Chem. Eng. Res. Des., 88 (2010) 1142–1147.
  17. S.H. Tan, X.G. Chen, Y. Ye, J. Sun, L.Q. Dai, Q. Ding, Hydrothermal removal of Sr2+ in aqueous solution via formation of Sr-substituted hydroxyapatite., J. Hazard. Mater., 179 (2010) 559–563.
  18. G. Zakrzewska-Trznadel, M. Harasimowicz, A.G. Chmielewski, Membrane processes in nuclear technology-application for liquid radioactive waste treatment, Sep. Purif. Technol., 22–23 (2001) 617–625.
  19. A. Ghaemi, M. Torab-Mostaedi, M. Ghannadi Maragheh, Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder, J. Hazard. Mater., 190 (2011) 916–921.
  20. A. Ahmadpour, M. Zabihi, M. Tahmasbi, T.R. Bastami, Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions, J. Hazard. Mater., 182 (2010) 552–556.
  21. X.H. Fang, F. Fang, C.H. Lu, L. Zheng, Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Nucl. Eng. Technol., 49 (2017) 556–561.
  22. W.W. Schulz, L.A. Bray, Solvent extraction recovery of byproduct 137Cs and 90Sr from HNO3 solutions – a technology review and assessment, Sep. Sci. Technol., 22 (1987) 191–214.
  23. G. Bond, H. Eccles, K. Pc, H. Af, D. Rowbotham, R. Mao, Chromatography removal of cesium from simulated spent fuel dissolver liquor, J. Chromatogr. Sep. Technol., 10 (2019) 1–7.
  24. Z. Majidnia, A. Idris, Evaluation of cesium removal from radioactive waste water using maghemite
    PVA-alginate beads, Chem. Eng. J., 262 (2015) 372–382.
  25. A. Savannah River Site SC (United States), Electrochemical Treatment of Alkaline Nuclear Wastes Innovative Technology Summary Report, Innovative Technology Summary Report, United States: N. p., 2001.
  26. L. Richards, B. Richards, A. Schaefer, Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis, J. Membr. Sci., 369 (2011) 188–195.
  27. S.V.S. Rao, B. Paul, K.B. Lal, S.V. Narasimhan, J. Ahmed, Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration, J. Radioanal. Nucl. Chem., 246 (2000) 413–418.
  28. S.H. Lin, T.Y. Wang, R.S. Juang, Metal rejection by nanofiltration from diluted solutions in the presence of complexing agents, Sep. Sci. Technol., 39 (2005) 363–376.
  29. H. Liu, J. Wang, Treatment of radioactive wastewater using direct contact membrane distillation, J. Hazard. Mater., 261 (2013) 307–315.
  30. A.M. El Kamash, Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations, J. Hazard. Mater., 151 (2008) 432–445.
  31. O.A.A. Moamen, I.M. Ismail, N. Abdel Monem, R.O. Abdel Rahman, Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeolite, J. Taiwan Inst. Chem. Eng., 55 (2015) 133–144.
  32. R.J. Orth, K.P. Brooks, D.E. Kurath, Review and Assessment of Technologies for the Separation of Cesium from Acidic Media, U.S. Department of Energy, Pacific Northwest Laboratory, Richland, Washington 99352, 1994, pp. 5–6.
  33. A.E. Osmanlioglu, Decontamination of radioactive wastewater by two-staged chemical precipitation, Nucl. Eng. Technol., 50 (2018) 886–889.
  34. J. Flouret, Y. Barré, H. Muhr, E. Plasari, Design of an intensified coprecipitation reactor for the treatment of liquid radioactive wastes, Chem. Eng. Sci., 77 (2012) 176–183.
  35. L. Wu, J. Cao, Z. Wu, J. Zhang, Z. Yang, The mechanism of radioactive strontium removal from simulated radioactive wastewater via a coprecipitation microfiltration process, J. Radioanal. Nucl. Chem., 314 (2017) 1973–1981.
  36. X. Luo, G. Zhang, X. Wang, P. Gu, Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium, J. Radioanal. Nucl. Chem., 298 (2013) 931–939.
  37. K. Shakir, H.F. Ghoneimy, S.G. Beheir, M. Refaat, Flotation of cesium coprecipitated with nickel hexacyanoferrate(II) from aqueous solutions and radioactive waste simulants, Sep. Sci. Technol., 42 (2007) 1341–1365.
  38. H.H. Saito, W.J. Crooks, D.J. McCabe, C.A. Nash, SuperLig 644 Ion Exchange Resin Stability in Nitric Acid at Elevated Temperatures, U.S. Department of Energy, 2001, p. 38.
  39. V.S. Ivanov, Radiation Chemistry of Polymers, VSP, Utrecht, The Netherlands, 1992.
  40. S.C. Jang, S.B. Hong, H.M. Yang, K.W. Lee, J.K. Moon, B.K. Seo, Y.S. Huh, C. Roh, Removal of radioactive cesium using prussian blue magnetic nanoparticles, Nanomater. (Basel, Switzerland), 4 (2014) 894–901.
  41. A. Mushtaq, Inorganic ion-exchangers: their role in chromatographic radionuclide generators for the decade 1993– 2002, J. Radioanal. Nucl. Chem., 262 (2004) 797–810.
  42. J. Lehto, L. Brodkin, R. Harjula, E. Tusa, Separation of radioactive strontium from alkaline nuclear waste solutions with the highly effective ion exchanger Srtreat, Nucl. Technol., 127 (1999) 81–87.
  43. H. Mimura, M. Saito, K. Akiba, Y. Onodera, Selective uptake of cesium by ammonium molybdophosphate (AMP)-calcium alginate composites, J. Nucl. Sci. Technol., 38 (2001) 872–878.
  44. J.K. Moon, K.W. Kim, C.H. Jung, Y.G. Shul, E.H. Lee, Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions, J. Radioanal. Nucl. Chem., 246 (2000) 299–307.
  45. T.J. Tranter, R.S. Herbst, T.A. Todd, A.L. Olson, H.B. Eldredge, Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions, Adv. Environ. Res., 6 (2002) 107–121.
  46. T.A. Todd, N.R. Mann, T.J. Tranter, F. Sebesta, J. John, A. Motl, Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents, J. Radioanal. Nucl. Chem., 254 (2002) 47–52.
  47. A. Nilchi, H. Atashi, A.H. Javid, R. Saberi, Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes, Appl. Radiat. Isot., 65 (2007) 482–487.
  48. D.T. Bostick, S.M. Depaoli, B. Guo, A Comparative Evaluation of Ionsiv Ie-911 and Chabazite Zeolite for the Removal of Radiostrontium and Cesium From Wastewater,U.S. Department of Energy, 1997.
  49. R.G. Anthony, R.G. Dosch, D. Gu, C. V Philip, Use of silicotitanates for removing cesium and strontium from defense waste, Ind. Eng. Chem. Res., 33 (1994) 2702–2705.
  50. S. Solbra, N. Allison, S. Waite, S. V Mikhalovsky, A.I. Bortun, L.N. Bortun, A. Clearfield, Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4·nH2O (M = H, Na)., Environ. Sci. Technol., 35 (2001) 626–629.
  51. Y.J. Gao, M.L. Feng, B. Zhang, Z.F. Wu, Y. Song, X.Y. Huang, An easily synthesized microporous framework material for the selective capture of radioactive Cs+ and Sr2+ ions, J. Mater. Chem. A, 6 (2018) 3967–3976.
  52. H. El-Said, Radiochemical studies on the separation of cesium, cobalt, and europium from aqueous solutions using zirconium selenomolybdate sorbent, J. Chem., 2013 (2013) 756876, doi: 10.1155/2013/756876.
  53. J. Van R. Smit, Ammonium salts of the heteropolyacids as cation exchangers, Nature, 181 (1958) 1530–1531.
  54. S. Gaur, Determination of Cs-137 in environmental water by ion-exchange chromatography, J. Chromatogr. A, 733 (1996) 57–71.
  55. H. Mimura, M. Saito, K. Akiba, Y. Onodera, Selective uptake of cesium by ammonium tungstophosphate (AWP) – calcium alginate composites, Solvent Extr. Ion Exch., 18 (2000) 1015–1027.
  56. D. Song, S.J. Park, H.W. Kang, S. Bin Park, J.I. Han, Recovery of lithium(I), strontium(II), and lanthanum(III) using Ca–alginate beads, J. Chem. Eng. Data., 58 (2013) 2455–2464.
  57. Y. Chen, J. Wang, Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des., 242 (2012) 445–451.
  58. Y. Yin, J. Wang, X. Yang, W. Li, Removal of strontium ions by immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres, Nucl. Eng. Technol., 49 (2017) 172–177.
  59. Y. Kim, Y.K. Kim, S. Kim, D. Harbottle, J.W. Lee, Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption, Chem. Eng. J., 313 (2017) 1042–1050.
  60. T. Vincent, C. Vincent, E. Guibal, Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents – a mini-review, Molecules, 20 (2015) 20582–20613.
  61. L. Chen, C.H. Zhou, S. Fiore, D.S. Tong, H. Zhang, C.S. Li, S.F. Ji, W.H. Yu, Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications, Appl. Clay Sci., 127–128 (2016) 143–163.
  62. H. Zhang, Y.K. Kim, T.N. Hunter, A.P. Brown, J.W. Lee, D. Harbottle, Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs+ adsorption capacity and selective recovery by flotation, J. Mater. Chem. A, 5 (2017) 15130–15143.
  63. D. Qin, X. Niu, M. Qiao, G. Liu, H. Li, Z. Meng, Adsorption of ferrous ions onto montmorillonites, Appl. Surf. Sci., 333 (2015) 170–177.
  64. Y. Kim, Y.K. Kim, J.H. Kim, M.S. Yim, D. Harbottle, J.W. Lee, Synthesis of functionalized porous montmorillonite via solidstate NaOH treatment for efficient removal of cesium and strontium ions, Appl. Surf. Sci., 450 (2018) 404–412.
  65. O.A.A. Moamen, H.A. Ibrahim, N. Abdelmonem, I.M. Ismail, Thermodynamic analysis for the sorptive removal of cesium and strontium ions onto synthesized magnetic nano zeolite, Microporous Mesoporous Mater., 223 (2016) 187–195.
  66. J. Brown, D. Hammond, B.T. Wilkins, Handbook for Assessing the Impact of a Radiological Incident on Levels of Radioactivity in Drinking Water and Risks to Operatives at Water Treatment Works: Supporting Scientific Report, 2008.
  67. T.-J. Liang, C.-N. Hsu, Sorption of cesium and strontium of natural mordenite, Radiochim. Acta., 61 (1993) 105–108.
  68. H.-F. Xiao, D.-D. Shao, Z.-L. Wu, W.-B. Peng, A. Akram, Z.-Y. Wang, L.-J. Zheng, W. Xing, S.-P. Sun, Zero liquid discharge hybrid membrane process for separation and recovery of ions with equivalent and similar molecular weights, Desalination, 482 (2020) 114387, doi: 10.1016/j.desal.2020.114387.
  69. T. Ito, Y. Xu, S.-Y. Kim, R. Nagaishi, T. Kimura, Adsorption behavior and radiation effects of a silica-based (Calix(4)+ Dodecanol)/SiO2-P adsorbent for selective separation of Cs(I) from high level liquid waste, Sep. Sci. Technol., 51 (2016) 22–31.
  70. M.A. Olatunji, M.U. Khandaker, H.N.M.E. Mahmud, Y.M. Amin, Influence of adsorption parameters on cesium uptake from aqueous solutions – a brief review, RSC Adv., 5 (2015) 71658–71683.
  71. J. Wang, S. Wang, Preparation, modification and environmental application of biochar: a review, J. Cleaner Prod., 227 (2019) 1002–1022.
  72. X. Zhao, Q. Meng, G. Chen, Z. Wu, G. Sun, G. Yu, L. Sheng, H. Weng, M. Lin, An acid-resistant magnetic
    Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution, Chem. Eng. J., 352 (2018) 133–142.
  73. S.S. Metwally, I.M. Ahmed, H.E. Rizk, Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution, J. Alloys Compd., 709 (2017) 438–444.
  74. P. Asgari, S.H. Mousavi, H. Aghayan, H. Ghasemi, T. Yousefi, Nd-BTC metal-organic framework (MOF); synthesis, characterization and investigation on its adsorption behavior toward cesium and strontium ions, Microchem. J., 150 (2019) 104188, doi: 10.1016/j.microc.2019.104188.
  75. N. Goyal, P. Gao, Z. Wang, S. Cheng, Y.S. Ok, G. Li, L. Liu, Nanostructured chitosan/molecular sieve-4A
    an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium,
    J. Hazard. Mater., 392 (2020) 122494, doi: 10.1016/j.jhazmat.2020.122494.
  76. T. Abdollahi, J. Towfighi, H. Rezaei-Vahidian, Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste, Environ. Technol. Innov., 17 (2020) 100592, doi:10.1016/j.eti.2019.100592.
  77. S. Chegrouche, A. Mellah, M. Barkat, Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies, Desalination, 235 (2009) 306–318.
  78. Q. Tian, K. Sasaki, Application of fly ash-based geopolymer for removal of cesium, strontium and arsenate from aqueous solutions: kinetic, equilibrium and mechanism analysis, Water Sci. Technol., 79 (2019) 2116–2125.
  79. V.S. Semenishchev, E.G. Pecherskikh, A.N. Gabdullin, Separation of cesium and strontium radionuclides by a highly dispersed silica being obtained by nitric acid treatment of serpentinite, AIP Conf. Proc., 2015 (2018) 020087, doi: 10.1063/1.5055160.
  80. H.M. Yang, C.W. Park, I. Kim, I.H. Yoon, Y. Sihn, Sulfur-modified chabazite as a low-cost ion exchanger for the highly selective and simultaneous removal of cesium and strontium, Appl. Surf. Sci., 536 (2021) 147776, doi:10.1016/j.apsusc.2020.147776.
  81. Y. Park, Y.C. Lee, W.S. Shin, S.J. Choi, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN), Chem. Eng. J., 162 (2010) 685–695.
  82. Y. Park, W.S. Shin, S.J. Choi, Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15):
    an efficient ion exchanger for cesium ion, Chem. Eng. J., 220 (2013) 204–213.
  83. H.R. Yu, J.Q. Hu, Z. Liu, X.J. Ju, R. Xie, W. Wang, L.Y. Chu, Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment, J. Hazard. Mater., 323 (2017) 632–640.
  84. A. Ararem, O. Bouras, A. Bouzidi, Batch and continuous fixed-bed column adsorption of Cs+ and Sr2+ onto montmorilloniteiron oxide composite: comparative and competitive study, J. Radioanal. Nucl. Chem., 298 (2013) 537–545.
  85. E.H. Borai, R. Harjula, L. malinen, A. Paajanen, Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals, J. Hazard. Mater., 172 (2009) 416–422.
  86. I. Smiciklas, I. Coha, M. Jovic, M. Nodilo, M. Sljivic-Ivanovic, S. Smiljanic, Z. Grahek, Efficient separation of strontium radionuclides from high-salinity wastewater by zeolite 4A synthesized from Bayer process liquids, Sci. Rep., 11 (2021) 1–14.
  87. S. Ding, Y. Yang, H. Huang, H. Liu, L. an Hou, Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium, J. Hazard. Mater., 294 (2015) 27–34.
  88. D. Chen, X. Zhao, F. Li, X. Zhang, Rejection of nuclides and silicon from boron-containing radioactive waste water using reverse osmosis, Sep. Purif. Technol., 163 (2016) 92–99.
  89. A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review, Desalination, 287 (2012) 2–18.
  90. M.Y. Prajitno, D. Harbottle, N. Hondow, H. Zhang, T.N. Hunter, The effect of pre-activation and milling on improving natural clinoptilolite for ion exchange of cesium and strontium, J. Environ. Chem. Eng., 8 (2020) 102991, doi: 10.1016/j.jece. 2019.102991.
  91. P. Amesh, K.A. Venkatesan, A.S. Suneesh, U. Maheswari, Tuning the ion exchange behavior of cesium and strontium on sodium iron titanate, Sep. Purif. Technol., 267 (2021) 118678, doi:10.1016/j.seppur.2021.118678.
  92. J. Wang, S. Zhuang, Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes, Nucl. Eng. Technol., 52 (2020) 328–336.
  93. T.A. Todd, T.A. Batcheller, J.D. Law, R.S. Herbst, Cesium and Strontium Separation Technologies Literature Review, U.S. Department of Energy, 2004.
  94. J.D. Law, K.N. Brewer, R.S. Herbst, T.A. Todd, D.J. Wood, Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste, Waste Manage., 19 (1999) 27–37.
  95. X. Liu, J. Wu, J. Wang, Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes, Chem. Eng. J., 344 (2018) 353–362.
  96. E. Kavitha, A. Sowmya, S. Prabhakar, P. Jain, R. Surya, M.P. Rajesh, Removal and recovery of heavy metals through size enhanced ultrafiltration using chitosan derivatives and optimization with response surface modeling, Int. J. Biol. Macromol., 132 (2019) 278–288.
  97. E. Kavitha, R. Kedia, N. Babaria, S. Prabhakar, M.P. Rajesh, Optimization of process using carboxymethyl chitosan for the removal of mixed heavy metals from aqueous streams, Int. J. Biol. Macromol., 149 (2020) 404–416.
  98. G. Zakrzewska, Radioactive solutions treatment by hybrid complexation–UF/NF process, J. Membr. Sci., 225 (2003) 25–39.
  99. E. Kavitha, M. Dalmia, A.M. Samuel, S. Prabhakar, M.P. Rajesh, Modeling and optimization of removal of strontium and cesium from aqueous streams by size enhanced ultrafiltration using chitosan derivative, Desal. Water Treat., 185 (2020) 262–276.
  100. Y. Lu, T. Chen, X. Chen, M. Qiu, Y. Fan, Fabrication of TiO2-doped ZrO2 nanofiltration membranes by using a modified colloidal sol-gel process and its application in simulative radioactive effluent, J. Membr. Sci., 514 (2016) 476–486.
  101. X. Wen, F. Li, X. Zhao, Removal of nuclides and boron from highly saline radioactive wastewater by direct contact membrane distillation, Desalination, 394 (2016) 101–107.
  102. M. Khayet, Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes, Desalination, 321 (2013) 60–66.
  103. X. Liu, J. Wu, L. An Hou, J. Wang, Removal of Co, Sr and Cs ions from simulated radioactive wastewater by forward osmosis, Chemosphere, 232 (2019) 87–95.
  104. N.A. Weerasekara, K.-H. Choo, S.-J. Choi, Metal oxide enhanced microfiltration for the selective removal of Co and Sr ions from nuclear laundry wastewater, J. Membr. Sci., 447 (2013) 87–95.
  105. N. Sato, Y. Sato, S. Yanase, Forward osmosis using dimethyl ether as a draw solute, Desalination, 349 (2014) 102–105.
  106. B. Corzo, T. de la Torre, C. Sans, E. Ferrero, J.J. Malfeito, Evaluation of draw solutions and commercially available forward osmosis membrane modules for wastewater reclamation at pilot scale, Chem. Eng. J., 326 (2017) 1–8.
  107. B. Vital, J. Bartacek, J.C. Ortega-Bravo, D. Jeison, Treatment of acid mine drainage by forward osmosis: Heavy metal rejection and reverse flux of draw solution constituents, Chem. Eng. J., 332 (2018) 85–91.
  108. F. Tortora, V. Innocenzi, M. Prisciandaro, F. Veglio, G. Mazziotti di Celso, Heavy metal removal from liquid wastes by using micellar-enhanced ultrafiltration, Water Air Soil Pollut., 227 (2016),
    doi: 10.1007/s11270-016-2935-7.
  109. F. Tortora, V. Innocenzi, G. Mazziotti di Celso, F. Veglio, M. Capocelli, V. Piemonte, M. Prisciandaro, Application of micellar-enhanced ultrafiltration in the pre-treatment of seawater for boron removal, Desalination, 428 (2018) 21–28.
  110. F. Tortora, V. Innocenzi, I. De Michelis, F. Veglio, G.M. Di Celso, M. Prisciandaro, Recovery of anionic surfactant through acidification/ultrafiltration in a micellar-enhanced ultrafiltration process for cobalt removal, Environ. Eng. Sci., 35 (2018) 493–500.
  111. R. Bade, S. Lee, A review of studies on micellar enhanced ultrafiltration for heavy metals removal from wastewater, J. Water Sustain., 1 (2011) 85–102.
  112. L. Di Palma, P. Ferrantelli, C. Merli, F. Biancifiori, Recovery of EDTA and metal precipitation from soil flushing solutions., J. Hazard. Mater., 103 (2003) 153–168.
  113. M.K. Purkait, S. DasGupta, S. De, Separation of aromatic alcohols using micellar-enhanced ultrafiltration and recovery of surfactant, J. Membr. Sci., 250 (2005) 47–59.
  114. A. Alkhudhiri, N. Hilal, Membrane Distillation-Principles, Applications, Configurations, Design, and Implementation, Elsevier Inc., 2018.
  115. H.C. Duong, L. Xia, Z. Ma, P. Cooper, W. Ela, L.D. Nghiem, Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation, J. Membr. Sci., 542 (2017) 133–142.
  116. A.F.S. Foureaux, V.R. Moreira, Y.A.R. Lebron, L.V.S. Santos, M.C.S. Amaral, Direct contact membrane distillation as an alternative to the conventional methods for value-added compounds recovery from acidic effluents: a review, Sep. Purif. Technol., 236 (2020) 116251, doi: 10.1016/j.seppur.2019.116251.
  117. M. Laqbaqbi, J.A. Sanmartino, M. Khayet, C. Garcia-Payo, M. Chaouch, Fouling in membrane distillation, osmotic distillation and osmotic membrane distillation, Appl. Sci., 7 (2017) 1–40.
  118. S. Meng, Y. Ye, J. Mansouri, V. Chen, Fouling and crystallisation behaviour of superhydrophobic
    nano-composite PVDF membranes in direct contact membrane distillation, J. Membr. Sci., 463 (2014) 102–112.
  119. F. Jia, J. Wang, Separation of cesium ions from aqueous solution by vacuum membrane distillation process, Prog. Nucl. Energy, 98 (2017) 293–300.
  120. S. Yuksel, N. Kabay, M. Yuksel, Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes, J. Hazard. Mater., 263 (2013) 307–310.
  121. S. Rodriguez-Mozaz, M. Ricart, M. Kock-Schulmeyer, H. Guasch, C. Bonnineau, L. Proia, M.L. de Alda, S. Sabater, D. Barcelo, Pharmaceuticals and pesticides in reclaimed water: efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant, J. Hazard. Mater., 282 (2015) 165–173.
  122. J. Yoon, G. Amy, J. Chung, J. Sohn, Y. Yoon, Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes, Chemosphere, 77 (2009) 228–235.
  123. E.O. Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes (Basel), 10 (2020) 89, doi: 10.3390/membranes10050089.
  124. A.K. Pabby, Membrane techniques for treatment in nuclear waste processing: global experience, Membr. Technol., 2008 (2008) 9–13.
  125. D. Chen, X. Zhao, F. Li, Influence of boron on rejection of trace nuclides by reverse osmosis, Desalination, 370 (2015) 72–78.
  126. J.M. Arnal, M. Sancho, G. Verdu, J.M. Campayo, J.M. Gozalvez, Treatment of 137Cs liquid wastes by reverse osmosis Part II. Real application, Desalination, 154 (2003) 35–42.
  127. D. Rana, T. Matsuura, M.A. Kassim, A.F. Ismail, Corrigendum to “Radioactive decontamination of water by membrane processes — a review”, [Desalination 321 (2013) 77–92], Desalination, 376 (2015) 131, doi:10.1016/j.desal.2015.08.021.
  128. T. Sasaki, J. Okabe, M. Henmi, H. Hayashi, Y. Iida, Cesium (Cs) and strontium (Sr) removal as model materials in radioactive water by advanced reverse osmosis membrane, Desal. Water Treat., 51 (2013) 1672–1677.
  129. N. Combernoux, L. Schrive, V. Labed, Y. Wyart, E. Carretier, P. Moulin, Treatment of radioactive liquid effluents by reverse osmosis membranes: from lab-scale to pilot-scale, Water Res., 123 (2017) 311–320.