References
- J.L. Parks, M. Edwards, Precipitative removal of As, Ba, B, Cr,
Sr, and V using sodium carbonate, J. Environ. Eng., 132 (2006)
489–496.
- L. Wu, G. Zhang, Q. Wang, L. Hou, P. Gu, Removal of strontium
from liquid waste using a hydraulic pellet
co-precipitation
microfiltration (HPC-MF) process, Desalination, 349 (2014)
31–38.
- G. Zakrzewska-Kołtuniewicz, Nuclear Waste Processing:
Pressure-Driven Membrane Processes, E. Drioli,
L. Giorno,
Eds., Encyclopedia of Membranes, Springer, Berlin, Heidelberg,
2015, pp. 1–3.
- G. Gurboga, H. Tel, Preparation of TiO2-SiO2 mixed gel
spheres for strontium adsorption, J. Hazard. Mater., 120 (2005)
135–142.
- A.J. Rabideau, J. Van Benschoten, A. Patel, K. Bandilla,
Performance assessment of a zeolite treatment wall for removing
Sr-90 from groundwater, J. Contam. Hydrol., 79 (2005) 1–24.
- W. Guan, J. Pan, H. Ou, X. Wang, X. Zou, W. Hu, C. Li,
X. Wu, Removal of strontium(II) ions by potassium tetratitanate
whisker and sodium trititanate whisker from aqueous
solution: equilibrium, kinetics and thermodynamics, Chem.
Eng. J., 167 (2011) 215–222.
- R.O. Abdel Rahman, H.A. Ibrahium, Y.-T. Hung, Liquid
radioactive wastes treatment: a review, Water, 3 (2011)
551–565.
- D. Rana, T. Matsuura, M.A. Kassim, A.F. Ismail, Radioactive
decontamination of water by membrane processes – a review,
Desalination, 321 (2013) 77–92.
- R.D. Ambashta, M.E.T. Sillanpää, Membrane purification in
radioactive waste management: a short review, J. Environ.
Radioact., 105 (2012) 76–84.
- H. Ed, L. Kw, C. Kh, C. Sj, K. Sh, Y. Ch, L. Ch, Effect of
precipitation and complexation on nanofiltration of strontiumcontaining
nuclear wastewater, Desalination, 147 (2002)
289–294.
- D.K. Gupta, C. Walther, Impact of Cesium on Plants and the
Environment, Springer International Publishing, Switzerland,
2017.
- R. Jalali-Rad, H. Ghafourian, Y. Asef, S.T. Dalir, M.H. Sahafipour,
B.M. Gharanjik, Biosorption of cesium by native and
chemically modified biomass of marine algae: introduce the
new biosorbents for biotechnology applications, J. Hazard.
Mater., 116 (2004) 125–134.
- J. Wang, S. Zhuang, Cesium separation from radioactive waste
by extraction and adsorption based on crown ethers and
calixarenes, Nucl. Eng. Technol., 52 (2020) 328–336.
- D. Alby, C. Charnay, M. Heran, B. Prelot, J. Zajac, Recent
developments in nanostructured inorganic materials for
sorption of cesium and strontium: synthesis and shaping,
sorption capacity, mechanisms, and selectivity—a review,
J. Hazard. Mater., 344 (2018) 511–530.
- T. Nakajima, Y. Ninomiya, M. Nenoi, Radiation-induced
reactions in the liver—modulation of radiation effects by
lifestyle-related factors, Int. J. Mol. Sci., 19 (2018) 3855,
doi: 10.3390/ijms19123855.
- V. Pacary, Y. Barré, E. Plasari, Method for the prediction of
nuclear waste solution decontamination by coprecipitation of
strontium ions with barium sulphate using the experimental
data obtained
in non-radioactive environment, Chem. Eng.
Res. Des., 88 (2010) 1142–1147.
- S.H. Tan, X.G. Chen, Y. Ye, J. Sun, L.Q. Dai, Q. Ding,
Hydrothermal removal of Sr2+ in aqueous solution via formation
of Sr-substituted hydroxyapatite., J. Hazard. Mater., 179 (2010)
559–563.
- G. Zakrzewska-Trznadel, M. Harasimowicz, A.G. Chmielewski,
Membrane processes in nuclear technology-application for
liquid radioactive waste treatment, Sep. Purif. Technol., 22–23
(2001) 617–625.
- A. Ghaemi, M. Torab-Mostaedi, M. Ghannadi Maragheh,
Characterizations of strontium(II) and barium(II) adsorption
from aqueous solutions using dolomite powder, J. Hazard.
Mater., 190 (2011) 916–921.
- A. Ahmadpour, M. Zabihi, M. Tahmasbi, T.R. Bastami, Effect
of adsorbents and chemical treatments on the removal of
strontium from aqueous solutions, J. Hazard. Mater., 182 (2010)
552–556.
- X.H. Fang, F. Fang, C.H. Lu, L. Zheng, Removal of Cs+, Sr2+, and
Co2+ ions from the mixture of organics and suspended solids
aqueous solutions by zeolites, Nucl. Eng. Technol., 49 (2017)
556–561.
- W.W. Schulz, L.A. Bray, Solvent extraction recovery of
byproduct 137Cs and 90Sr from HNO3 solutions – a technology
review and assessment, Sep. Sci. Technol., 22 (1987) 191–214.
- G. Bond, H. Eccles, K. Pc, H. Af, D. Rowbotham, R. Mao,
Chromatography removal of cesium from simulated spent fuel
dissolver liquor, J. Chromatogr. Sep. Technol., 10 (2019) 1–7.
- Z. Majidnia, A. Idris, Evaluation of cesium removal from
radioactive waste water using maghemite
PVA-alginate beads,
Chem. Eng. J., 262 (2015) 372–382.
- A. Savannah River Site SC (United States), Electrochemical
Treatment of Alkaline Nuclear Wastes Innovative Technology
Summary Report, Innovative Technology Summary Report,
United States: N. p., 2001.
- L. Richards, B. Richards, A. Schaefer, Renewable energy
powered membrane technology: Salt and inorganic contaminant
removal by nanofiltration/reverse osmosis, J. Membr. Sci., 369
(2011) 188–195.
- S.V.S. Rao, B. Paul, K.B. Lal, S.V. Narasimhan, J. Ahmed,
Effective removal of cesium and strontium from radioactive
wastes using chemical treatment followed by ultra
filtration, J. Radioanal. Nucl. Chem., 246 (2000) 413–418.
- S.H. Lin, T.Y. Wang, R.S. Juang, Metal rejection by nanofiltration
from diluted solutions in the presence of complexing agents,
Sep. Sci. Technol., 39 (2005) 363–376.
- H. Liu, J. Wang, Treatment of radioactive wastewater using
direct contact membrane distillation, J. Hazard. Mater.,
261 (2013) 307–315.
- A.M. El Kamash, Evaluation of zeolite A for the sorptive
removal of Cs+ and Sr2+ ions from aqueous solutions using batch
and fixed bed column operations, J. Hazard. Mater., 151 (2008)
432–445.
- O.A.A. Moamen, I.M. Ismail, N. Abdel Monem, R.O. Abdel
Rahman, Factorial design analysis for optimizing the removal
of cesium and strontium ions on synthetic nano-sized zeolite,
J. Taiwan Inst. Chem. Eng., 55 (2015) 133–144.
- R.J. Orth, K.P. Brooks, D.E. Kurath, Review and Assessment of
Technologies for the Separation of Cesium from Acidic Media,
U.S. Department of Energy, Pacific Northwest Laboratory,
Richland, Washington 99352, 1994, pp. 5–6.
- A.E. Osmanlioglu, Decontamination of radioactive wastewater
by two-staged chemical precipitation, Nucl. Eng. Technol.,
50 (2018) 886–889.
- J. Flouret, Y. Barré, H. Muhr, E. Plasari, Design of an intensified
coprecipitation reactor for the treatment of liquid radioactive
wastes, Chem. Eng. Sci., 77 (2012) 176–183.
- L. Wu, J. Cao, Z. Wu, J. Zhang, Z. Yang, The mechanism of
radioactive strontium removal from simulated radioactive
wastewater via a coprecipitation microfiltration process,
J. Radioanal. Nucl. Chem., 314 (2017) 1973–1981.
- X. Luo, G. Zhang, X. Wang, P. Gu, Research on a pellet
co-precipitation micro-filtration process for the treatment of
liquid waste containing strontium, J. Radioanal. Nucl. Chem.,
298 (2013) 931–939.
- K. Shakir, H.F. Ghoneimy, S.G. Beheir, M. Refaat, Flotation of
cesium coprecipitated with nickel hexacyanoferrate(II) from
aqueous solutions and radioactive waste simulants, Sep. Sci.
Technol., 42 (2007) 1341–1365.
- H.H. Saito, W.J. Crooks, D.J. McCabe, C.A. Nash, SuperLig
644 Ion Exchange Resin Stability in Nitric Acid at Elevated
Temperatures, U.S. Department of Energy, 2001, p. 38.
- V.S. Ivanov, Radiation Chemistry of Polymers, VSP, Utrecht,
The Netherlands, 1992.
- S.C. Jang, S.B. Hong, H.M. Yang, K.W. Lee, J.K. Moon, B.K. Seo,
Y.S. Huh, C. Roh, Removal of radioactive cesium using prussian
blue magnetic nanoparticles, Nanomater. (Basel, Switzerland),
4 (2014) 894–901.
- A. Mushtaq, Inorganic ion-exchangers: their role in
chromatographic radionuclide generators for the decade 1993–
2002, J. Radioanal. Nucl. Chem., 262 (2004) 797–810.
- J. Lehto, L. Brodkin, R. Harjula, E. Tusa, Separation of
radioactive strontium from alkaline nuclear waste solutions
with the highly effective ion exchanger Srtreat, Nucl. Technol.,
127 (1999) 81–87.
- H. Mimura, M. Saito, K. Akiba, Y. Onodera, Selective uptake
of cesium by ammonium molybdophosphate (AMP)-calcium
alginate composites, J. Nucl. Sci. Technol., 38 (2001) 872–878.
- J.K. Moon, K.W. Kim, C.H. Jung, Y.G. Shul, E.H. Lee, Preparation
of organic-inorganic composite adsorbent beads for removal of
radionuclides and heavy metal ions, J. Radioanal. Nucl. Chem.,
246 (2000) 299–307.
- T.J. Tranter, R.S. Herbst, T.A. Todd, A.L. Olson, H.B. Eldredge,
Evaluation of ammonium molybdophosphate-polyacrylonitrile
(AMP-PAN) as a cesium selective sorbent for the removal of
137Cs from acidic nuclear waste solutions, Adv. Environ. Res.,
6 (2002) 107–121.
- T.A. Todd, N.R. Mann, T.J. Tranter, F. Sebesta, J. John, A. Motl,
Cesium sorption from concentrated acidic tank wastes using
ammonium molybdophosphate-polyacrylonitrile composite
sorbents, J. Radioanal. Nucl. Chem., 254 (2002) 47–52.
- A. Nilchi, H. Atashi, A.H. Javid, R. Saberi, Preparations of
PAN-based adsorbers for separation of cesium and cobalt from
radioactive wastes, Appl. Radiat. Isot., 65 (2007) 482–487.
- D.T. Bostick, S.M. Depaoli, B. Guo, A Comparative Evaluation
of Ionsiv Ie-911 and Chabazite Zeolite for the Removal of
Radiostrontium and Cesium From Wastewater,U.S. Department
of Energy, 1997.
- R.G. Anthony, R.G. Dosch, D. Gu, C. V Philip, Use of
silicotitanates for removing cesium and strontium from defense
waste, Ind. Eng. Chem. Res., 33 (1994) 2702–2705.
- S. Solbra, N. Allison, S. Waite, S. V Mikhalovsky, A.I. Bortun,
L.N. Bortun, A. Clearfield, Cesium and strontium ion exchange
on the framework titanium silicate M2Ti2O3SiO4·nH2O (M = H,
Na)., Environ. Sci. Technol., 35 (2001) 626–629.
- Y.J. Gao, M.L. Feng, B. Zhang, Z.F. Wu, Y. Song, X.Y. Huang,
An easily synthesized microporous framework material for
the selective capture of radioactive Cs+ and Sr2+ ions, J. Mater.
Chem. A, 6 (2018) 3967–3976.
- H. El-Said, Radiochemical studies on the separation of cesium,
cobalt, and europium from aqueous solutions using zirconium
selenomolybdate sorbent, J. Chem., 2013 (2013) 756876,
doi: 10.1155/2013/756876.
- J. Van R. Smit, Ammonium salts of the heteropolyacids as cation
exchangers, Nature, 181 (1958) 1530–1531.
- S. Gaur, Determination of Cs-137 in environmental water by
ion-exchange chromatography, J. Chromatogr. A, 733 (1996)
57–71.
- H. Mimura, M. Saito, K. Akiba, Y. Onodera, Selective uptake
of cesium by ammonium tungstophosphate (AWP) – calcium
alginate composites, Solvent Extr. Ion Exch., 18 (2000) 1015–1027.
- D. Song, S.J. Park, H.W. Kang, S. Bin Park, J.I. Han, Recovery of
lithium(I), strontium(II), and lanthanum(III) using Ca–alginate
beads, J. Chem. Eng. Data., 58 (2013) 2455–2464.
- Y. Chen, J. Wang, Removal of radionuclide Sr2+ ions from
aqueous solution using synthesized magnetic chitosan beads,
Nucl. Eng. Des., 242 (2012) 445–451.
- Y. Yin, J. Wang, X. Yang, W. Li, Removal of strontium ions by
immobilized Saccharomyces cerevisiae in magnetic chitosan
microspheres, Nucl. Eng. Technol., 49 (2017) 172–177.
- Y. Kim, Y.K. Kim, S. Kim, D. Harbottle, J.W. Lee, Nanostructured
potassium copper hexacyanoferrate-cellulose hydrogel for
selective and rapid cesium adsorption, Chem. Eng. J., 313 (2017)
1042–1050.
- T. Vincent, C. Vincent, E. Guibal, Immobilization of metal
hexacyanoferrate ion-exchangers for the synthesis of metal ion
sorbents – a mini-review, Molecules, 20 (2015) 20582–20613.
- L. Chen, C.H. Zhou, S. Fiore, D.S. Tong, H. Zhang, C.S. Li,
S.F. Ji, W.H. Yu, Functional magnetic nanoparticle/clay mineral
nanocomposites: preparation, magnetism and versatile
applications, Appl. Clay Sci., 127–128 (2016) 143–163.
- H. Zhang, Y.K. Kim, T.N. Hunter, A.P. Brown, J.W. Lee,
D. Harbottle, Organically modified clay with potassium
copper hexacyanoferrate for enhanced Cs+ adsorption capacity
and selective recovery by flotation, J. Mater. Chem. A, 5 (2017)
15130–15143.
- D. Qin, X. Niu, M. Qiao, G. Liu, H. Li, Z. Meng, Adsorption of
ferrous ions onto montmorillonites, Appl. Surf. Sci., 333 (2015)
170–177.
- Y. Kim, Y.K. Kim, J.H. Kim, M.S. Yim, D. Harbottle, J.W. Lee,
Synthesis of functionalized porous montmorillonite via solidstate
NaOH treatment for efficient removal of cesium and
strontium ions, Appl. Surf. Sci., 450 (2018) 404–412.
- O.A.A. Moamen, H.A. Ibrahim, N. Abdelmonem, I.M. Ismail,
Thermodynamic analysis for the sorptive removal of cesium
and strontium ions onto synthesized magnetic nano zeolite,
Microporous Mesoporous Mater., 223 (2016) 187–195.
- J. Brown, D. Hammond, B.T. Wilkins, Handbook for Assessing
the Impact of a Radiological Incident on Levels of Radioactivity
in Drinking Water and Risks to Operatives at Water Treatment
Works: Supporting Scientific Report, 2008.
- T.-J. Liang, C.-N. Hsu, Sorption of cesium and strontium of
natural mordenite, Radiochim. Acta., 61 (1993) 105–108.
- H.-F. Xiao, D.-D. Shao, Z.-L. Wu, W.-B. Peng, A. Akram,
Z.-Y. Wang, L.-J. Zheng, W. Xing, S.-P. Sun, Zero liquid discharge
hybrid membrane process for separation and recovery of ions
with equivalent and similar molecular weights, Desalination,
482 (2020) 114387, doi: 10.1016/j.desal.2020.114387.
- T. Ito, Y. Xu, S.-Y. Kim, R. Nagaishi, T. Kimura, Adsorption
behavior and radiation effects of a silica-based (Calix(4)+
Dodecanol)/SiO2-P adsorbent for selective separation of Cs(I)
from high level liquid waste, Sep. Sci. Technol., 51 (2016) 22–31.
- M.A. Olatunji, M.U. Khandaker, H.N.M.E. Mahmud, Y.M.
Amin, Influence of adsorption parameters on cesium uptake
from aqueous solutions – a brief review, RSC Adv., 5 (2015)
71658–71683.
- J. Wang, S. Wang, Preparation, modification and environmental
application of biochar: a review, J. Cleaner Prod., 227 (2019)
1002–1022.
- X. Zhao, Q. Meng, G. Chen, Z. Wu, G. Sun, G. Yu, L. Sheng,
H. Weng, M. Lin, An acid-resistant magnetic
Nb-substituted
crystalline silicotitanate for selective separation of strontium
and/or cesium ions from aqueous solution, Chem. Eng. J.,
352 (2018) 133–142.
- S.S. Metwally, I.M. Ahmed, H.E. Rizk, Modification of
hydroxyapatite for removal of cesium and strontium ions from
aqueous solution, J. Alloys Compd., 709 (2017) 438–444.
- P. Asgari, S.H. Mousavi, H. Aghayan, H. Ghasemi, T. Yousefi,
Nd-BTC metal-organic framework (MOF); synthesis,
characterization and investigation on its adsorption behavior
toward cesium and strontium ions, Microchem. J., 150 (2019)
104188, doi: 10.1016/j.microc.2019.104188.
- N. Goyal, P. Gao, Z. Wang, S. Cheng, Y.S. Ok, G. Li, L. Liu,
Nanostructured chitosan/molecular sieve-4A
an emergent
material for the synergistic adsorption of radioactive major
pollutants cesium and strontium,
J. Hazard. Mater., 392 (2020)
122494, doi: 10.1016/j.jhazmat.2020.122494.
- T. Abdollahi, J. Towfighi, H. Rezaei-Vahidian, Sorption of
cesium and strontium ions by natural zeolite and management
of produced secondary waste, Environ. Technol. Innov.,
17 (2020) 100592, doi:10.1016/j.eti.2019.100592.
- S. Chegrouche, A. Mellah, M. Barkat, Removal of strontium
from aqueous solutions by adsorption onto activated carbon:
kinetic and thermodynamic studies, Desalination, 235 (2009)
306–318.
- Q. Tian, K. Sasaki, Application of fly ash-based geopolymer
for removal of cesium, strontium and arsenate from aqueous
solutions: kinetic, equilibrium and mechanism analysis, Water
Sci. Technol., 79 (2019) 2116–2125.
- V.S. Semenishchev, E.G. Pecherskikh, A.N. Gabdullin, Separation
of cesium and strontium radionuclides by a highly dispersed
silica being obtained by nitric acid treatment of serpentinite,
AIP Conf. Proc., 2015 (2018) 020087, doi: 10.1063/1.5055160.
- H.M. Yang, C.W. Park, I. Kim, I.H. Yoon, Y. Sihn, Sulfur-modified
chabazite as a low-cost ion exchanger for the highly selective
and simultaneous removal of cesium and strontium, Appl.
Surf. Sci., 536 (2021) 147776, doi:10.1016/j.apsusc.2020.147776.
- Y. Park, Y.C. Lee, W.S. Shin, S.J. Choi, Removal of cobalt,
strontium and cesium from radioactive laundry wastewater by
ammonium molybdophosphate-polyacrylonitrile (AMP-PAN),
Chem. Eng. J., 162 (2010) 685–695.
- Y. Park, W.S. Shin, S.J. Choi, Ammonium salt of heteropoly acid
immobilized on mesoporous silica (SBA-15):
an efficient ion
exchanger for cesium ion, Chem. Eng. J., 220 (2013) 204–213.
- H.R. Yu, J.Q. Hu, Z. Liu, X.J. Ju, R. Xie, W. Wang, L.Y. Chu,
Ion-recognizable hydrogels for efficient removal of cesium
ions from aqueous environment, J. Hazard. Mater., 323 (2017)
632–640.
- A. Ararem, O. Bouras, A. Bouzidi, Batch and continuous fixed-bed
column adsorption of Cs+ and Sr2+ onto montmorilloniteiron
oxide composite: comparative and competitive study,
J. Radioanal. Nucl. Chem., 298 (2013) 537–545.
- E.H. Borai, R. Harjula, L. malinen, A. Paajanen, Efficient removal
of cesium from low-level radioactive liquid waste using natural
and impregnated zeolite minerals, J. Hazard. Mater., 172 (2009)
416–422.
- I. Smiciklas, I. Coha, M. Jovic, M. Nodilo, M. Sljivic-Ivanovic,
S. Smiljanic, Z. Grahek, Efficient separation of strontium
radionuclides from high-salinity wastewater by zeolite 4A
synthesized from Bayer process liquids, Sci. Rep., 11 (2021)
1–14.
- S. Ding, Y. Yang, H. Huang, H. Liu, L. an Hou, Effects of feed
solution chemistry on low pressure reverse osmosis filtration of
cesium and strontium, J. Hazard. Mater., 294 (2015) 27–34.
- D. Chen, X. Zhao, F. Li, X. Zhang, Rejection of nuclides and
silicon from boron-containing radioactive waste water using
reverse osmosis, Sep. Purif. Technol., 163 (2016) 92–99.
- A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a
comprehensive review, Desalination, 287 (2012) 2–18.
- M.Y. Prajitno, D. Harbottle, N. Hondow, H. Zhang, T.N. Hunter,
The effect of pre-activation and milling on improving natural
clinoptilolite for ion exchange of cesium and strontium,
J. Environ. Chem. Eng., 8 (2020) 102991, doi: 10.1016/j.jece.
2019.102991.
- P. Amesh, K.A. Venkatesan, A.S. Suneesh, U. Maheswari,
Tuning the ion exchange behavior of cesium and strontium on
sodium iron titanate, Sep. Purif. Technol., 267 (2021) 118678,
doi:10.1016/j.seppur.2021.118678.
- J. Wang, S. Zhuang, Cesium separation from radioactive waste
by extraction and adsorption based on crown ethers and
calixarenes, Nucl. Eng. Technol., 52 (2020) 328–336.
- T.A. Todd, T.A. Batcheller, J.D. Law, R.S. Herbst, Cesium and
Strontium Separation Technologies Literature Review, U.S.
Department of Energy, 2004.
- J.D. Law, K.N. Brewer, R.S. Herbst, T.A. Todd, D.J. Wood,
Development and demonstration of solvent extraction processes
for the separation of radionuclides from acidic radioactive
waste, Waste Manage., 19 (1999) 27–37.
- X. Liu, J. Wu, J. Wang, Removal of Cs(I) from simulated
radioactive wastewater by three forward osmosis membranes,
Chem. Eng. J., 344 (2018) 353–362.
- E. Kavitha, A. Sowmya, S. Prabhakar, P. Jain, R. Surya,
M.P. Rajesh, Removal and recovery of heavy metals through
size enhanced ultrafiltration using chitosan derivatives and
optimization with response surface modeling, Int. J. Biol.
Macromol., 132 (2019) 278–288.
- E. Kavitha, R. Kedia, N. Babaria, S. Prabhakar, M.P. Rajesh,
Optimization of process using carboxymethyl chitosan for
the removal of mixed heavy metals from aqueous streams,
Int. J. Biol. Macromol., 149 (2020) 404–416.
- G. Zakrzewska, Radioactive solutions treatment by hybrid
complexation–UF/NF process, J. Membr. Sci., 225 (2003)
25–39.
- E. Kavitha, M. Dalmia, A.M. Samuel, S. Prabhakar, M.P. Rajesh,
Modeling and optimization of removal of strontium and
cesium from aqueous streams by size enhanced ultrafiltration
using chitosan derivative, Desal. Water Treat., 185 (2020)
262–276.
- Y. Lu, T. Chen, X. Chen, M. Qiu, Y. Fan, Fabrication of TiO2-doped ZrO2 nanofiltration membranes by using a modified
colloidal sol-gel process and its application in simulative
radioactive effluent, J. Membr. Sci., 514 (2016) 476–486.
- X. Wen, F. Li, X. Zhao, Removal of nuclides and boron
from highly saline radioactive wastewater by direct contact
membrane distillation, Desalination, 394 (2016) 101–107.
- M. Khayet, Treatment of radioactive wastewater solutions by
direct contact membrane distillation using surface modified
membranes, Desalination, 321 (2013) 60–66.
- X. Liu, J. Wu, L. An Hou, J. Wang, Removal of Co, Sr and
Cs ions from simulated radioactive wastewater by forward
osmosis, Chemosphere, 232 (2019) 87–95.
- N.A. Weerasekara, K.-H. Choo, S.-J. Choi, Metal oxide
enhanced microfiltration for the selective removal of Co and
Sr ions from nuclear laundry wastewater, J. Membr. Sci.,
447 (2013) 87–95.
- N. Sato, Y. Sato, S. Yanase, Forward osmosis using dimethyl
ether as a draw solute, Desalination, 349 (2014) 102–105.
- B. Corzo, T. de la Torre, C. Sans, E. Ferrero, J.J. Malfeito,
Evaluation of draw solutions and commercially available
forward osmosis membrane modules for wastewater
reclamation at pilot scale, Chem. Eng. J., 326 (2017) 1–8.
- B. Vital, J. Bartacek, J.C. Ortega-Bravo, D. Jeison, Treatment of
acid mine drainage by forward osmosis: Heavy metal rejection
and reverse flux of draw solution constituents, Chem. Eng. J.,
332 (2018) 85–91.
- F. Tortora, V. Innocenzi, M. Prisciandaro, F. Veglio,
G. Mazziotti di Celso, Heavy metal removal from liquid
wastes by using micellar-enhanced ultrafiltration, Water Air
Soil Pollut., 227 (2016),
doi: 10.1007/s11270-016-2935-7.
- F. Tortora, V. Innocenzi, G. Mazziotti di Celso, F. Veglio,
M. Capocelli, V. Piemonte, M. Prisciandaro, Application of
micellar-enhanced ultrafiltration in the pre-treatment of
seawater for boron removal, Desalination, 428 (2018) 21–28.
- F. Tortora, V. Innocenzi, I. De Michelis, F. Veglio, G.M. Di
Celso, M. Prisciandaro, Recovery of anionic surfactant
through acidification/ultrafiltration in a micellar-enhanced
ultrafiltration process for cobalt removal, Environ. Eng. Sci.,
35 (2018) 493–500.
- R. Bade, S. Lee, A review of studies on micellar enhanced
ultrafiltration for heavy metals removal from wastewater,
J. Water Sustain., 1 (2011) 85–102.
- L. Di Palma, P. Ferrantelli, C. Merli, F. Biancifiori, Recovery of
EDTA and metal precipitation from soil flushing solutions.,
J. Hazard. Mater., 103 (2003) 153–168.
- M.K. Purkait, S. DasGupta, S. De, Separation of aromatic
alcohols using micellar-enhanced ultrafiltration and recovery
of surfactant, J. Membr. Sci., 250 (2005) 47–59.
- A. Alkhudhiri, N. Hilal, Membrane Distillation-Principles,
Applications, Configurations, Design, and Implementation,
Elsevier Inc., 2018.
- H.C. Duong, L. Xia, Z. Ma, P. Cooper, W. Ela, L.D. Nghiem,
Assessing the performance of solar thermal driven membrane
distillation for seawater desalination by computer simulation,
J. Membr. Sci., 542 (2017) 133–142.
- A.F.S. Foureaux, V.R. Moreira, Y.A.R. Lebron, L.V.S. Santos,
M.C.S. Amaral, Direct contact membrane distillation as an
alternative to the conventional methods for value-added
compounds recovery from acidic effluents: a review, Sep. Purif.
Technol., 236 (2020) 116251, doi: 10.1016/j.seppur.2019.116251.
- M. Laqbaqbi, J.A. Sanmartino, M. Khayet, C. Garcia-Payo,
M. Chaouch, Fouling in membrane distillation, osmotic
distillation and osmotic membrane distillation, Appl. Sci.,
7 (2017) 1–40.
- S. Meng, Y. Ye, J. Mansouri, V. Chen, Fouling and crystallisation
behaviour of superhydrophobic
nano-composite PVDF
membranes in direct contact membrane distillation, J. Membr.
Sci., 463 (2014) 102–112.
- F. Jia, J. Wang, Separation of cesium ions from aqueous
solution by vacuum membrane distillation process, Prog.
Nucl. Energy, 98 (2017) 293–300.
- S. Yuksel, N. Kabay, M. Yuksel, Removal of bisphenol A (BPA)
from water by various nanofiltration (NF) and reverse osmosis
(RO) membranes, J. Hazard. Mater., 263 (2013) 307–310.
- S. Rodriguez-Mozaz, M. Ricart, M. Kock-Schulmeyer,
H. Guasch, C. Bonnineau, L. Proia, M.L. de Alda, S. Sabater,
D. Barcelo, Pharmaceuticals and pesticides in reclaimed water:
efficiency assessment of a microfiltration–reverse osmosis
(MF–RO) pilot plant, J. Hazard. Mater., 282 (2015) 165–173.
- J. Yoon, G. Amy, J. Chung, J. Sohn, Y. Yoon, Removal of toxic
ions (chromate, arsenate, and perchlorate) using reverse
osmosis, nanofiltration, and ultrafiltration membranes,
Chemosphere, 77 (2009) 228–235.
- E.O. Ezugbe, S. Rathilal, Membrane technologies in
wastewater treatment: a review, Membranes (Basel), 10 (2020)
89, doi: 10.3390/membranes10050089.
- A.K. Pabby, Membrane techniques for treatment in nuclear
waste processing: global experience, Membr. Technol.,
2008 (2008) 9–13.
- D. Chen, X. Zhao, F. Li, Influence of boron on rejection of trace
nuclides by reverse osmosis, Desalination, 370 (2015) 72–78.
- J.M. Arnal, M. Sancho, G. Verdu, J.M. Campayo, J.M. Gozalvez,
Treatment of 137Cs liquid wastes by reverse osmosis Part II.
Real application, Desalination, 154 (2003) 35–42.
- D. Rana, T. Matsuura, M.A. Kassim, A.F. Ismail, Corrigendum
to “Radioactive decontamination of water by membrane
processes — a review”, [Desalination 321 (2013) 77–92],
Desalination, 376 (2015) 131, doi:10.1016/j.desal.2015.08.021.
- T. Sasaki, J. Okabe, M. Henmi, H. Hayashi, Y. Iida, Cesium (Cs)
and strontium (Sr) removal as model materials in radioactive
water by advanced reverse osmosis membrane, Desal. Water
Treat., 51 (2013) 1672–1677.
- N. Combernoux, L. Schrive, V. Labed, Y. Wyart, E. Carretier,
P. Moulin, Treatment of radioactive liquid effluents by reverse
osmosis membranes: from lab-scale to pilot-scale, Water Res.,
123 (2017) 311–320.