References

  1. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Res., 79 (2015) 128–146.
  2. S. Vigneshwaran, P. Sirajudheen, C.P. Nabeena, V.P. Sajna, S. Meenakshi, Photocatalytic performance of chitosan tethered magnetic Fe2O3-like (3D/2D) hybrid for the dynamic removal of anionic dyes: degradation and mechanistic pathways, Int. J. Biol. Macromol., 183 (2021) 2088–2099.
  3. B.K. Avasarala, S.R. Tirukkovalluri, S. Bojja, Photocatalytic degradation of monocrotophos pesticide – an endocrine disruptor by magnesium doped titania, J. Hazard. Mater., 186 (2011) 1234–1240.
  4. N. Kumar, 2,4-D ethyl ester poisoning: a case report, Indian J. Crit. Care Med., 23 (2019) 432–433.
  5. S. Sandeep, K.L. Nagashree, T. Maiyalagan, G. Keerthiga, Photocatalytic degradation of
    2,4-dichlorophenoxyacetic acid – a comparative study in hydrothermal TiO2 and commercial TiO2, Appl. Surf. Sci., 449 (2018) 371–379.
  6. R. Sarikaya, M. Selvi, Investigation of acute toxicity of (2,4-dichlorophenoxy)acetic acid (2,4-D) herbicide on larvae and adult Nile tilapia (Oreochromis niloticus L.), Environ. Toxicol. Pharmacol., 20 (2005) 264–268.
  7. J. Senthilnathan, L. Philip, Removal of mixed pesticides from drinking water system by photodegradation using suspended and immobilized TiO2, J. Environ. Sci. Health., Part B, 44 (2009) 262–270.
  8. M.E. Mahmoud, A.M. El-Ghanam, S.R. Saad, R.H.A. Mohamed, Promoted removal of metformin hydrochloride anti-diabetic drug from water by fabricated and modified nanobiochar from artichoke leaves, Sustainable Chem. Pharm., 18 (2020) 100336–100347.
  9. P. Tixier, E. Malézieux, M. Dorel, C. Bockstaller, P. Girardin, An indicator linked to a crop model to assess the dynamics of the risk of pesticide water pollution. Application to bananabased cropping systems, Eur. J. Agron., 26 (2007) 71–81.
  10. N.S. Trivedi, R.A. Kharkar, S.A. Mandavgane, 2,4-Dichlorophenoxyacetic acid adsorption on adsorbent prepared from groundnut shell: effect of preparation conditions on equilibrium adsorption capacity, Arabian J. Chem., 12 (2019) 4541–4549.
  11. A. Qurratu, A. Reehan, A review of 2,4-dichlorophenoxyacetic acid (2,4-D) derivatives: 2,4-D dimethylamine salt and 2,4-D butyl ester, Int. J. Appl. Eng. Res., 11 (2016) 9946–9955.
  12. N.S. Trivedi, S.A. Mandavgane, Fundamentals of 2,4-Dichlorophenoxyacetic acid removal from aqueous solutions, Sep. Purif. Rev., 47 (2018) 337–354.
  13. K.S. Varma, R.J. Tayade, K.J. Shah, P.A. Joshi, A.D. Shukla, V.G. Gandhi, Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: a review, Water-Energy Nexus, 3 (2020) 46–61.
  14. A. El Golli, M. Fendrich, N. Bazzanella, C. Dridi, A. Miotello, M. Orlandi, Wastewater remediation with ZnO photocatalysts: green synthesis and solar concentration as an economically and environmentally viable route to application, J. Environ. Manage., 286 (2021) 112226, doi: 10.1016/j.jenvman.2021.112226.
  15. S. Kanan, M.A. Moyet, R.B. Arthur, H.H. Patterson, Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies, Catal. Rev. Sci. Eng., 62 (2020) 1–65.
  16. A. Balakrishnan, S. Appunni, K. Gopalram, Immobilized TiO2/chitosan beads for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, Int. J. Biol. Macromol., 161 (2020) 282–291.
  17. X. Zhang, G. Xiao, Y. Wang, Y. Zhao, H. Su, T. Tan, Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications, Carbohydr. Polym., 169 (2017) 101–107.
  18. S. Xu, G. Xiao, Z. Wang, Y. Wang, Z. Liu, H. Su, A reusable chitosan/TiO2@g-C3N4 nanocomposite membrane for photocatalytic removal of multiple toxic water pollutants under visible light, Water Sci. Technol., 83 (2021) 3063–3074.
  19. M.H. Farzana, S. Meenakshi, Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique, Ind. Eng. Chem. Res., 53 (2014) 55–63.
  20. M.H. Farzana, S. Meenakshi, Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads, Int. J. Biol. Macromol., 70 (2014) 420–426.
  21. N. Ahmad, S. Sultana, M.Z. Khan, S. Sabir, Chitosan Based Nanocomposites as Efficient Adsorbents for Water Treatment, In: Modern Age Waste Water Problems, Springer International Publishing, 2020, pp. 69–83.
  22. A. Sowmya, S. Meenakshi, Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads, Desal. Water Treat., 52 (2014) 2583–2593.
  23. A. Zabihi Sahebi, S. Koushkbaghi, M. Pishnamazi, A. Askari, R. Khosravi, M. Irani, Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions, Int. J. Biol. Macromol., 140 (2019) 1296–1304.
  24. B. Alizadeh, M. Delnavaz, A. Shakeri, Removal of Cd(II) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite, Carbohydr. Polym., 181 (2018) 675–683.
  25. Q.H. Li, M. Dong, R. Li, Y.Q. Cui, G.X. Xie, X.X. Wang, Y.Z. Long, Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers, Carbohydr. Polym., 253 (2021) 117200, doi: 10.1016/j. carbpol.2020.117200.
  26. C.E. Zubieta, P.V. Messina, C. Luengo, M. Dennehy, O. Pieroni, P.C. Schulz, Reactive dyes remotion by porous TiO2-chitosan materials, J. Hazard. Mater., 152 (2008) 765–777.
  27. A. Nithya, K. Jothivenkatachalam, S. Prabhu, K. Jeganathan, Chitosan based nanocomposite materials as photocatalyst – a review, Mater. Sci. Forum., 781 (2014) 79–94.
  28. C. Zhao, Q. Yan, S. Wang, P. Dong, L. Zhang, Regenerable g-C3N4-chitosan beads with enhanced photocatalytic activity and stability, RSC Adv., 8 (2018) 27516–27524.
  29. A. Balakrishnan, K. Gopalram, S. Appunni, Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO2 modified catalyst: kinetics and operating cost analysis, Environ. Sci. Pollut. Res., 28 (2021) 33331–33343.
  30. Z. Abdmouleh, A. Gastli, L. Ben-Brahim, M. Haouari, N.A. Al-Emadi, Review of optimization techniques applied for the integration of distributed generation from renewable energy sources, Renewable Energy, 113 (2017) 266–280.
  31. M.H. Khorsandi, A. Mohammadi, F. Karimineja, M. Haghighi, S. Karimzadeh, J. Khorsandi, A.A. Aghapour, Optimizing linear alkyl benzene sulfonate removal using Fenton oxidation process in Taguchi method,
    J. Water Chem. Technol., 38 (2016) 266–272.
  32. A.H. Jawad, A.F.M. Alkarkhi, N.S.A. Mubarak, Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation: optimization using response surface methodology (RSM), Desal. Water Treat., 56 (2015) 161–172.
  33. M. Faraji, A. Ebrahimi, H. Nourmoradi, A. Nikoonahad, A. Abdolahnejad, R. Ghanbari, A. Mohammadi, Optimizing the removal of humic acid with polyaluminum chloride and polyaluminum ferric chloride as green coagulants using response surface methodology, Desal. Water Treat., 139 (2019) 297–304.
  34. H. Nourmoradi, A. Ebrahimi, Y. Hajizadeh, S. Nemati, A. Mohammad, Application of nanozeolite and nanocarbon for the removal of humic acid from aqueous solutions, Int. J. Pharm. Technol., 8 (2016) 13337–13352.
  35. V. Mahmoodi, J. Sargolzaei, Optimization of photocatalytic degradation of naphthalene using nano-TiO2/UV system: statistical analysis by a response surface methodology, Desal. Water Treat., 52 (2014) 6664–6672.
  36. B. Keshtegar, C. Mert, O. Kisi, Comparison of four heuristic regression techniques in solar radiation modeling: kriging method vs RSM, MARS and M5 model tree, Renewable Sustainable Energy Rev., 81 (2018) 330–341.
  37. A. Jamil, T.H. Bokhari, T. Javed, R. Mustafa, M. Sajid, S. Noreen, M. Zuber, A. Nazir, M. Iqbal, M.I. Jilani, Photocatalytic degradation of disperse dye Violet-26 using TiO2 and ZnO nanomaterials and process variable optimization, J. Mater. Res. Technol., 9 (2019) 1119–1128.
  38. S. Vigneshwaran, J. Preethi, S. Meenakshi, Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: photocatalytic and adsorption studies, Int. J. Biol. Macromol., 132 (2019) 289–299.
  39. A. Sraw, T. Kaur, Y. Pandey, A. Sobti, R.K. Wanchoo, A.P. Toor, Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water, J. Environ. Chem. Eng., 6 (2018) 7035–7043.