References

  1. M.J. Hao, M.Q. Qiu, H. Yang, B.W. Hu, X.X. Wang, Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis, Sci. Total Environ., 760 (2021) 143333, doi:10.1016/j.scitotenv.2020.143333.
  2. L. Yao, H. Yang, Z.S. Chen, M.Q. Qiu, B.W. Hu, X.X. Wang, Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater, Chemosphere, 273 (2020) 128576, doi:10.1016/j.chemosphere.2020.128576.
  3. X.L. Liu, H.W. Pang, X.W. Liu, Q. Li, N. Zhang, L. Mao, M.Q. Qiu, B.W. Hu, H. Yang, X.K. Wang, Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions, The Innovation, 2 (2021) 100076, doi: 10.1016/j.xinn.2021.100076.
  4. X.L. Liu, R. Ma, L. Zhuang, B.W. Hu, J.R. Chen, X.Y. Liu, X.K. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants, Crit. Rev. Env. Sci. Technol., 51 (2021) 751–790.
  5. T.M. Huggins, A. Haeger, J.C. Biffinger, Z.Y.J. Ren, Granular biochar compared with activated carbon for wastewater treatment and resource recovery, Water Res., 94 (2016) 225–232.
  6. J. Lehmann, S. Joseph, Biochar for Environmental Management: An Introduction, J. Lehmann, S. Joseph, Eds., Biochar for Environmental Management, Routledge, 2015, pp. 33–46.
  7. A. Downie, A. Crosky, P. Munroe, Physical Properties of Biochar, J. Lehmann, S. Joseph, Eds., Biochar for Environmental Management, Routledge, 2012, pp. 45–64.
  8. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen, Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol., 214 (2016) 836–851.
  9. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  10. K.N. Palansooriya, Y. Yang, Y.F. Tsang, B. Sarkar, D. Hou, X. Cao, E. Meers, J. Rinklebe, K.H. Kim, Y.S. Ok, Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review, Crit. Rev. Env. Sci. Technol., 50 (2020) 549–611.
  11. Y. Tan, X. Wan, X. Ni, L. Wang, T. Zhou, H. Sun, N. Wang, X. Yin, Efficient removal of Cd(II) from aqueous solution by chitosan modified kiwi branch biochar, Chemosphere, 289 (2021) 133251, doi:10.1016/j.chemosphere.2021.133251.
  12. R. Liu, H. Wang, L. Han, B. Hu, M. Qiu, Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@biochar composites, Environ. Sci. Pollut. Res., 28 (2021) 55176–55185.
  13. J.F. Chin, Z.W. Heng, H.C. Teoh, W.C. Chong, Y.L. Pang, Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater – modification, application and mechanism, Chemosphere, (2021) 133035, doi: 10.1016/j. chemosphere.2021.133035.
  14. I. Ihsanullah, M.T. Khan, M. Zubair, M. Bilal, M. Sajid, Removal of pharmaceuticals from water using sewage sludgederived biochar: a review, Chemosphere, 289 (2021) 133196, doi:10.1016/j.chemosphere.2021.133196.
  15. W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D.C.W. Tsang, Y.S. Ok, B. Gao, Biochar technology in wastewater treatment: a critical review, Chemosphere, 252 (2020) 126539,
    doi: 10.1016/j.chemosphere.2020.126539.
  16. N. Hagemann, K. Spokas, H.P. Schmidt, R. Kägi, M.A. Böhler, T.D. Bucheli, Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs, Water, 10 (2018) 182, doi:10.3390/w10020182.
  17. P.K. Swain, L.M. Das, S.N. Naik, Biomass to liquid: a prospective challenge to research and development in 21st century, Renewable Sustainable Energy Rev., 15 (2011) 4917–4933.
  18. K. Qian, A. Kumar, H. Zhang, D. Bellmer, R. Huhnke, Recent advances in utilization of biochar, Renewable Sustainable Energy Rev., 42 (2015) 1055–1064.
  19. J. Lehmann, M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, D. Crowley, Biochar effects on soil biota –
    a review, Soil Biol. Biochem., 43 (2011) 1812–1836.
  20. B.A. Akinyemi, A. Adesina, Recent advancements in the use of biochar for cementitious applications: a review, J. Build. Eng., 32 (2020) 101705, doi: 10.1016/j.jobe.2020.101705.
  21. S. Li, C.Y. Chan, M. Sharbatmaleki, H. Trejo, S. Delagah, Engineered biochar production and its potential benefits in a closed-loop water-reuse agriculture system, Water, 12 (2020) 2847, doi: 10.3390/w12102847.
  22. A. Demirbas, Effects of temperature and particle size on bio–char yield from pyrolysis of agricultural residues, J. Anal. Appl. Pyrolysis, 4 (2004) 221–225.
  23. Y. Chhiti, M. Kemiha, Thermal conversion of biomass, pyrolysis and gasification, Int. J. Eng. Sci., 2 (2013) 75–85.
  24. A.V. Bridgwater, P. Carson, M. Coulson, A comparison of fast and slow pyrolysis liquids from mallee, Int. J. Global Energy Issues, 27 (2007) 204–216.
  25. Z.B. Laougé, A.S. Çığgın, H. Merdun, Optimization and characterization of bio-oil from fast pyrolysis of Pearl Millet and Sida cordifolia L. by using response surface methodology, Fuel, 274 (2020) 117842, doi:10.1016/j.fuel.2020.117842.
  26. N. Priharto, F. Ronsse, G. Yildiz, H.J. Heeres, P.J. Deuss, W. Prins, Fast pyrolysis with fractional condensation of ligninrich digested stillage from second-generation bioethanol production, J. Anal. Appl. Pyrolysis, 145 (2020) 104756, doi: 10.1016/j.jaap.2019.104756.
  27. S.T. Gopakumar, Bio-oil Production Through Fast Pyrolysis and Upgrading to “Green” Transportation Fuels,
    A Dissertation, Doctor of Philosophy–The Graduate Faculty of Auburn University, Alabama, 2012, p. 196.
  28. T. Yuan, W. He, G. Yin, S. Xu, Comparison of bio-chars formation derived from fast and slow pyrolysis of walnut shell, Fuel, 261 (2020) 116450, doi: 10.1016/j.fuel.2019.116450.
  29. J. Park, Y. Lee, C. Ryu, Y.K. Park, Slow pyrolysis of rice straw analysis of products properties, carbon and energy yields, Bioresour. Technol., 155 (2014) 63–70.
  30. B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C. Tsang, D. Hou, Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar, J. Cleaner Prod., 174 (2018) 977–987.
  31. T. Sharma, Biochar and Other Properties Resulting from the Gasification and Combustion of Biomass with Different Components, Ph.D. (Doctor of Philosophy) Thesis University of Iowa, 2019.
  32. R.C. Saxena, D. Seal, S. Kumar, H.B. Goyal, Thermo-chemical routes for hydrogen rich gas from biomass:
    a review, Renewable Sustainable Energy Rev., 12 (2008) 1909–1927.
  33. K. Zhang, J. Chang, Y. Guan, H. Chen, Y. Yang, J. Jiang, Lignocellulosic biomass gasification technology in China, Renewable Energy, 49 (2013) 175–184.
  34. A. Kruse, Hydrothermal biomass gasification, J. Supercrit. Fluids, 47 (2009) 391–399.
  35. P. Parthasarathy, K.S. Narayanan, Hydrogen production from steam gasification of biomass influence of process parameters on hydrogen yield – a review, Renewable Energy, 66 (2014) 570–579.
  36. Y. Matsumura, Chapter 9 – Hydrothermal Gasification of Biomass, A. Pandey, T. Bhaskar, M. Stöcker, R.K. Sukumaran, Eds., Recent Advances in Thermo-Chemical Conversion of Biomass, Elsevier B.V., Amsterdam,
    The Netherlands, 2015, pp. 251–267.
  37. K.R. Khalilpour, Ed., Polygeneration with Polystorage for Chemical and Energy Hubs, Academic Press, 2018.
  38. M. Lucian, L. Fiori, Hydrothermal carbonization of waste biomass: process design, modeling, energy efficiency and cost analysis, Energies, 10 (2017) 211, doi: 10.3390/en10020211.
  39. M. Ahmad, S.S. Lee, X.M. Dou, D. Mohan, J.K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118 (2012) 536–544.
  40. W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.-M. Fortuna, I. Dallmeyer, M. Garcia-Perez, Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties, Biomass Bioenergy, 84 (2016) 37–48.
  41. X.P. Gai, H.Y. Wang, J. Liu, L.M. Zhai, S. Liu, T.Z. Ren, H.B. Liu, Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate, PLoS One, 9 (2014) e113888, doi:10.1371/journal.pone.0113888.
  42. P. Devi, A.K. Saroha, Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge, Bioresour. Technol., 192 (2015) 312–320.
  43. F. Lian, B.B. Sun, Z.G. Song, L.Y. Zhu, X.H. Qi, B.S. Xing, Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole, Chem. Eng. J., 248 (2014) 128–134.
  44. N. Claoston, A.W. Samsuri, M.H. Ahmad Husni, M.S.M. Amran, Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars, Waste Manage. Res., 32 (2014) 331–339.
  45. X.D. Cao, L.N. Ma, B. Gao, W. Harris, Dairy-manure derived biochar effectively sorbs lead and atrazine, Environ. Sci. Technol., 43 (2009) 3285–3291.
  46. J.K. Sun, F. Lian, Z.Q. Liu, L.Y. Zhu, Z.G. Song, Biochars derived from various crop straws: characterization and Cd(II) removal potential, Ecotoxicol. Environ. Saf., 106 (2014) 226–231.
  47. K.H. Kim, J.Y. Kim, T.S. Cho, J.W. Choi, Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida), Bioresour. Technol., 118 (2012) 158–162.
  48. M. Essandoh, B. Kunwar, C.U. Pittman, D. Mohan, T. Mlsna, Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar, Chem. Eng. J., 265 (2015) 219–227.
  49. M. Laghari, M.S. Mirjat, Z.Q. Hu, S. Fazal, B. Xiao, M.A. Hu, Z.H. Chen, D.B. Guo, Effects of biochar application rate on sandy desert soil properties and sorghum growth, Catena, 135 (2015) 313–320.
  50. M. Laghari, Z.Q. Hu, M.S. Mirjat, B. Xiao, A.A. Tagar, M. Hu, Fast pyrolysis biochar from sawdust improves the quality of desert soils and enhances plant growth, J. Sci. Food Agric., 96 (2016) 199–206.
  51. S. Gupta, H.W. Kua, S. Dai Pang, Biochar-mortar composite manufacturing, evaluation of physical properties and economic viability, Constr. Build. Mater., 167 (2018) 874–889.
  52. E. Sørmo, L. Silvani, G. Thune, H. Gerber, H.P. Schmidt, A.B. Smebye, G. Cornelissen, Waste timber pyrolysis in a medium-scale unit emission budgets and biochar quality, Sci. Total Environ., 718 (2020) 137335, doi:10.1016/j.scitotenv.2020.137335.
  53. P. Kim, A.M. Johnson, M.E. Essington, M. Radosevich, W.-T. Kwon, S.-H. Lee, T.G. Rials, T.G. Labbé, Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis, Chemosphere, 90 (2013) 2623–2630.
  54. Y. Zhang, X. Xu, P. Zhang, L. Zhao, H. Qiu, X. Cao, Pyrolysistemperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar, Chemosphere, 232 (2019) 273–280.
  55. S.D. Ferreira, I.P. Lazzarotto, J. Junges, C. Manera, M. Godinho, E. Osório, Steam gasification of biochar derived from elephant grass pyrolysis in a screw reactor, Energy Convers. Manage., 153 (2017) 163–174.
  56. P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu, Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution, Bioresour. Technol., 121 (2012) 235–240.
  57. S. Gupta, H.W. Kua, Application of rice husk biochar as filler in cenosphere modified mortar: preparation, characterization and performance under elevated temperature, Constr. Build. Mater., 253 (2020) 119083, doi: 10.1016/j.conbuildmat. 2020.119083.
  58. S. Muthukrishnan, S. Gupta, H.W. Kua, Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar, Theor. Appl. Fract. Mech., 104 (2019) 102376, doi:10.1016/j.tafmec.2019.102376.
  59. L. Wang, N.S. Bolan, D.C. Tsang, D. Hou, Green immobilization of toxic metals using alkaline enhanced rice husk biochar: effects of pyrolysis temperature and KOH concentration, Sci. Total Environ., 720 (2020) 137584, doi: 10.1016/j.scitotenv.2020.137584.
  60. O. Masek, V. Budarin, M. Gronnow, K. Crombie, P. Brownsort, E. Fitzpatrick, P. Hurst, Microwave and slow pyrolysis biochar – comparison of physical and functional properties, J. Anal. Appl. Pyrolysis, 100 (2013) 41–48.
  61. R. Chintala, J. Mollinedo, T.E. Schumacher, S.K. Papiernik, D.D. Malo, D.E. Clay, S. Kumar, D.W. Gulbrandson, Nitrate sorption and desorption in biochars from fast pyrolysis, Microporous Mesoporous Mater., 179 (2013) 250–257.
  62. S.S. Lam, P.N.Y. Yek, Y.S. Ok, C.C. Chong, R.K. Liew, D.C.W. Tsang, Y.K. Park, Z.L. Liu, C.S. Wong, W.X. Peng, Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment, J. Hazard. Mater., 390 (2020) 121649, doi: 10.1016/j.jhazmat.2019.121649.
  63. G. Chu, J. Zhao, F.Y. Chen, X.D. Dong, D.D. Zhou, N. Liang, M. Wu, B. Pan, C.E.W. Steinberg, Physicochemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation, Environ. Pollut., 227 (2017), 372–379.
  64. D. Bhaduri, A. Saha, D. Desai, H.N. Meena, Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short term incubation study, Chemosphere, 148 (2016) 86–98.
  65. J. Yang, G. Ji, Y. Gao, W. Fu, M. Irfan, L. Mu, A. Li, High-yield and high-performance porous biochar produced from pyrolysis of peanut shell with low-dose ammonium polyphosphate for chloramphenicol adsorption,
    J. Cleaner Prod., 264 (2020) 121516, doi: 10.1016/j.jclepro.2020.121516.
  66. M. Lubwama, V.A. Yiga, Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda, Renewable Energy, 111 (2017) 532–542.
  67. I.Y. Mohammed, Y.A. Abakr, M. Musa, S. Yusup, A. Singh, F.K. Kazi, Valorization of Bambara groundnut shell via intermediate pyrolysis products distribution and characterization, J. Cleaner Prod., 139 (2016) 717–728.
  68. M.K. Awasthi, Y. Duan, S.K. Awasthi, T. Liu, Z. Zhang, Influence of bamboo biochar on mitigating greenhouse gas emissions and nitrogen loss during poultry manure composting, Bioresour. Technol., 303 (2020) 122952, doi: 10.1016/j.biortech.2020.122952.
  69. J. Alchouron, C. Navarathna, H.D. Chludil, N.B. Dewage, F. Perez, C.U. Pittman Jr., T.E. Mlsna, Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation, Sci. Total Environ., 706 (2020) 135943, doi: 10.1016/j.scitotenv.2019.135943.
  70. Z. Hilioti, C.M. Michailof, D. Valasiadis, E.F. Iliopoulou, V. Koidou, A.A. Lappas, Characterization of castor plantderived biochars and their effects as soil amendments on seedlings, Biomass Bioenergy, 105 (2017) 96–106.
  71. S. Biswas, S.S. Mohapatra, U. Kumari, B.C. Meikap, T.K. Sen, Batch and continuous closed circuit semi-fluidized bed operation removal of MB dye using sugarcane bagasse biochar and alginate composite adsorbents,
    J. Environ. Chem. Eng., 8 (2020) 103637, doi: 10.1016/j.jece.2019.103637.
  72. A.Z. Khan, S. Khan, T. Ayaz, M.L. Brusseau, M.A. Khan, J. Nawab, S. Muhammad, Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil, Environ. Pollut., 263 (2020) 114446, doi: 10.1016/j.envpol.2020.114446.
  73. Y.H. Tang, S.H. Liu, D.C. Tsang, Microwave-assisted production of CO2-activated biochar from sugarcane bagasse for electrochemical desalination, J. Hazard Mater., 383 (2020) 121192, doi:10.1016/j.jhazmat.2019.121192.
  74. M. Carrier, A.G. Hardie, Ü. Uras, J. Görgens, J.H. Knoetze, Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar, J. Anal. Appl. Pyrolysis, 96 (2012) 24–32.
  75. P. Llorach-Massana, E. Lopez-Capel, J. Peña, J. Rieradevall, J.I. Montero, N. Puy, Technical feasibility and carbon footprint of biochar co-production with tomato plant residue, Waste Manage., 67 (2017) 121–130.
  76. J.O. Eduah, E.K. Nartey, M.K. Abekoe, H. Breuning-Madsen, M.N. Andersen, Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures, Geoderma, 341 (2019) 10–17.
  77. E. Amoakwah, K.A. Frimpong, D. Okae-Anti, E. Arthur, Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam, Geoderma, 307 (2017) 189–197.
  78. S. Xue, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, C. Ma, Food waste based biochars for ammonia nitrogen removal from aqueous solutions, Bioresour. Technol., 292 (2019) 121927, doi:10.1016/j.biortech.2019.121927.
  79. A.D. Igalavithana, S.W. Choi, P.D. Dissanayake, J. Shang, C.H. Wang, X. Yang, Y.S. Ok, Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption, J. Hazard Mater., 391 (2019) 121147, doi: 10.1016/j.jhazmat.2019.121147.
  80. N. Khan, P. Chowdhary, A. Ahmad, B.S. Giri, P. Chaturvedi, Hydrothermal liquefaction of rice husk and cow dung in mixedbed- rotating pyrolyzer and application of biochar for dye removal, Bioresour. Technol., 309 (2020) 123294, doi: 10.1016/j. biortech.2020.123294.
  81. Q. Chen, J. Qin, P. Sun, Z. Cheng, G. Shen, Cow dung-derived engineered biochar for reclaiming phosphate from aqueous solution and its validation as slow-release fertilizer in soil-crop system, J. Cleaner Prod., 172 (2018) 2009–2018.
  82. S.V. Novais, M.D.O. Zenero, J. Tronto, R.F. Conz, C.E.P. Cerri, Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption, J. Environ. Manage., 214 (2018) 36–44.
  83. H. Chen, S.K. Awasthi, T. Liu, Y. Duan, X. Ren, Z. Zhang, M.K. Awasthi, Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting,
    J. Hazard Mater., 389 (2019) 121908, doi: 10.1016/j.jhazmat.2019.121908.
  84. J. Zhang, J. Shao, Q. Jin, X. Zhang, H. Yang, Y. Chen, H. Chen, Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar, Sci. Total Environ., 716 (2020) 137016, doi:10.1016/j.scitotenv.2020.137016.
  85. Y.F. Huang, Y.Y. Huang, P.T. Chiueh, S.L. Lo, Heterogeneous Fenton oxidation of trichloroethylene catalyzed by sewage sludge biochar: experimental study and life cycle assessment, Chemosphere, 249 (2020) 126139, doi:10.1016/j.chemosphere. 2020.126139.
  86. M. Rizwan, Q. Lin, X. Chen, Y. Li, G. Li, X. Zhao, Y. Tian, Synthesis, characterization and application of magnetic and acid modified biochars following alkaline pretreatment of rice and cotton straws, Sci. Total Environ., 714 (2020) 136532, doi: 10.1016/j.scitotenv.2020.136532.
  87. N. Sharma, P. Kaur, D. Jain, M.S. Bhullar, In-vitro evaluation of rice straw biochars’ effect on bispyribac-sodium dissipation and microbial activity in soil, Ecotoxicol. Environ. Saf., 191 (2020) 110204, doi:10.1016/j.ecoenv.2020.110204.
  88. B. Chen, D. Zhou, L. Zhu, Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environ. Sci. Technol., 42 (2008) 5137–5143.
  89. L. Zhao, X. Cao, Q. Wang, F. Yang, S. Xu, Mineral constituents profile of biochar derived from diversified waste biomasses implications for agricultural applications, J. Environ. Qual., 42 (2013) 545–552.
  90. L. Zhao, X. Cao, O. Mašek, A. Zimmerman, Heterogeneity of biochar properties as a function of feedstock sources and production temperatures, J. Hazard. Mater., 256 (2013) 1–9.
  91. D. Mohan, H. Kumar, A. Sarswat, M. Alexandre-Franco, C.U. Pittman Jr., Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis biochars, Chem. Eng. J., 236 (2014) 513–528.
  92. D. Mohan, S. Rajput, V.K. Singh, P.H. Steele, C.U. Pittman Jr., Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent, J. Hazard. Mater., 188 (2011) 319–333.
  93. H.N. Tran, S.J. You, H.P. Chao, Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar, Waste Manage. Res., 34 (2016) 129–138.
  94. S. Sohi, E. Lopez-Capel, E. Krull, R. Bol, Biochar, climate change and soil: a review to guide future research, CSIRO Land Water Sci. Rep., 5 (2009) 17–31.
  95. X. Wang, Z. Guo, Z. Hu, J. Zhang, Recent advances in biochar application for water and wastewater treatment: a review, Peer J., 8 (2020) e9164, doi: 10.7717/peerj.9164.
  96. H. Li, X. Dong, E.B. Da Silva, L.M. De Oliveira, Y. Chen, L.Q. Ma, Mechanisms of metal sorption by biochars: biochar characteristics and modifications, Chemosphere, 178 (2017) 466–478.
  97. H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar, Water Res., 46 (2012) 854–862.
  98. F. Zhang, X Wang, D. Yin, B. Peng, C. Tan, Y. Liu, X. Tan, S. Wu, Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes), J. Environ. Manage., 153 (2015) 68–73.
  99. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Preparation of activated carbon from olive stone waste optimization study on the removal of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ from aqueous solution using response surface methodology, J. Dispersion Sci. Technol., 35 (2014) 913–925.
  100. H. Jin, M.U. Hanif, S. Capareda, Z. Chang, H. Huang, Y. Ai, Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algaedairy- manure and effect of KOH activation, J. Environ. Chem. Eng., 4 (2016) 365–372.
  101. S. Wang, B. Gao, A.R. Zimmerman, Y. Li, L. Ma, W.G. Harris, K.W. Migliaccio, Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite, Bioresour. Technol., 175 (2015) 391–395.
  102. Y. Yao, B. Gao, M. Inyang, A.R. Zimmerman, X. Cao, P. Pullammanappallil, L. Yang, Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings, J. Hazard. Mater., 190 (2011) 501–507.
  103. B. Chen, Z. Chen, S. Lv, A novel magnetic biochar efficiently sorbs organic pollutants and phosphate, Bioresour. Technol., 102 (2011) 716–723.
  104. D. Mohan, C.U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents – a critical review,
    J. Hazard. Mater., 142 (2007) 1–53.
  105. R. Sneddon, H. Garelick, E. Valsami-Jones, An investigation into arsenic(V) removal from aqueous solutions by hydroxyapatite and bone char, Miner. Mag., 69 (2005) 769–780.
  106. S. Jiang, L. Huang, T.A.H. Nguyen, Y.S. Ok, V. Rudolph, H. Yang, D. Zhang, Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions, Chemosphere, 142 (2016) 64–71.
  107. J. Jin, M. Kang, K. Sun, Z. Pan, F. Wu, B. Xing, Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine, Sci. Total Environ., 550 (2016) 504–513.
  108. W. Gwenzi, T. Musarurwa, P. Nyamugafata, N. Chaukura, A. Chaparadza, S. Mbera, Adsorption of Zn2+ and Ni2+ in a binary aqueous solution by biosorbants derived from sawdust and water hyacinth (Eichhorniacrassipes), Water Sci. Technol., 70 (2014) 1419–1427.
  109. J. Park, Y.S. Ok, S. Kim, J. Cho, J. Heo, R.D. Delaune, D. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere, 142 (2016) 77–83.
  110. X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manurederived biochar, Environ. Sci. Pollut. Res., 20 (2013) 358–368.
  111. L. Trakal, D. Bingöl, M.Pohořelý, M. Hruška, M. Komárek, Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars engineering implications, Bioresour. Technol., 171 (2014) 442–451.
  112. W. Gwenzi, N. Chaukura, C. Noubactep, M. Fnd, Biocharbased water treatment systems as a potential low-cost and sustainable technology for clean water provision, J. Environ. Manage., 197 (2017) 732–749.
  113. Y. Han, A.A. Boateng, P.X. Qi, I.M. Lima, J. Chang, Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties, J. Environ. Manage., 118 (2013) 196–204.
  114. Z. Chen, B. Chen, C.T. Chiou, Fast and slow rates of naphthalene sorption to biochars produced at different temperatures, Environ. Sci. Technol., 46 (2012) 11104–11111.
  115. X. Zhu, Y. Liu, C. Zhou, G. Luo, S. Zhang, J. Chen, A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline, Carbon, 77 (2014) 627–636.
  116. M. Inyang, B. Gao, A. Zimmerman, M. Zhang, H. Chen, Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites, Chem. Eng. J., 236 (2014) 39–46.
  117. K. Sun, M. Kang, Z. Zhang, J. Jin, Z. Wang, Z. Pan, D. Xu, F. Wu, B. Xing, Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene, Environ. Sci. Technol., 47 (2013) 11473–11481.
  118. M. Ahmad, S.S. Lee, A.U. Rajapaksha, M. Vithanage, M. Zhang, J.S. Cho, S. Lee, Y.S. Ok, Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures, Bioresour. Technol., 143 (2013) 615–622.
  119. R. Xu, S. Xiao, J. Yuan, A. Zhao, Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues, Bioresour. Technol., 102 (2011) 10293–10298.
  120. M. Xie, W. Chen, Z. Xu, S. Zheng, D. Zhu, Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions, Environ. Pollut., 186 (2014) 187–194.
  121. F. Younas, A. Mustafa, Z.U.R. Farooqi, X. Wang, S. Younas, W. Mohy-Ud-Din, M. Ashir Hameed, M. Mohsin Abrar, A.A. Maitlo, S. Noreen, Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications, Water, 13 (2021) 215, doi: 10.3390/w13020215.
  122. S. Rangabhashiyam, P. Balasubramanian, The potential of lignocellulosic biomass precursors for biochar production, performance, mechanism and wastewater application – a review, Ind. Crops Prod., 128 (2019) 405–423.
  123. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125 (2015) 70–85.
  124. R. Goswami, J. Shim, S. Deka, D. Kumari, R. Kataki, M. Kumar, Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures, Ecol. Eng., 97 (2016) 444–451.
  125. T. Sizmur, T. Fresno, G. Akgül, H. Frost, E. Moreno-Jiménez, Biochar modification to enhance sorption of inorganics from water, Bioresour. Technol., 246 (2017) 34–47.
  126. S. Guo, J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang, H. Xia, Effects of CO2 activation on porous structures of coconut shell-based activated carbons, Appl. Surf. Sci., 255 (2009) 8443–8449.
  127. T. Shim, J. Yoo, C. Ryu, Y. Park, J. Jung, Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity, Bioresour. Technol., 197 (2015) 85–90.
  128. I.M. Lima, W.E. Marshall, Adsorption of selected environmentally important metals by poultry manure-based granular activated carbons, J. Chem. Technol. Biotechnol., 80 (2005) 1054–1061.
  129. T. Zhang, W. Walawender, L. Fan, M. Fan, D. Daugaard, R. Brown, Preparation of activated carbon from forest and agricultural residues through co-activation, Chem. Eng. J., 105 (2004) 53–59.
  130. K. Lou, A.U. Rajapaksha, Y.S. Ok, S.X. Chang, Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions, Chem. Speciation Bioavailability, 28 (2016) 42–50.
  131. L. Zhao, W. Zheng, O. Maek, X. Chen, B. Gu, B.K. Sharma, X. Cao, Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity, J. Environ. Qual., 46 (2017) 393–401.
  132. S. Hamid, Z. Chowdhury, S. Zain, Base catalytic approach a promising technique for the activation of biochar for equilibrium sorption studies of copper, Cu(II) ions in single solute system, Materials, 7 (2014) 2815–2832.
  133. H. Jin, S. Capareda, Z. Chang, J. Gao, Y. Xu, J. Zhang, Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal adsorption property and its improvement with KOH activation, Bioresour. Technol., 169 (2014) 622–629.
  134. R. Pietrzak, P. Nowicki, J. Kaźmierczak, I. Kuszyńska, J. Goscianska, J. Przepiórski, Comparison of the effects of different chemical activation methods on properties of carbonaceous adsorbents obtained from cherry stones, Chem. Eng. Res. Des., 92 (2014) 1187–1191.
  135. L. Chen, X.L. Chen, C.H. Zhou, H.M. Yang, S.F. Ji, D.S. Tong, Z.K. Zhong, W.H. Yu, M.Q. Chu, Environmental-friendly montmorillonite-biochar composites facile production and tunable adsorption-release of ammonium and phosphate, J. Cleaner Prod., 156 (2017) 648–659.
  136. Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou, A.E. Creamer, Y. Sun, L. Yang, Characterization and environmental applications of clay-biochar composites, Chem. Eng. J., 242 (2014) 136–143.
  137. M. Zhang, B. Gao, Y. Yao, Y. Xue, M. Inyang, Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions, Chem. Eng. J., 210 (2012) 26–32.
  138. M. Zhang, B. Gao, Y. Yao, M. Inyang, Phosphate removal ability of biochar/MgAlLdh ultra-fine composites prepared by liquid-phase deposition, Chemosphere, 92 (2013) 1042–1047.
  139. S. Jellali, E. Diamantopoulos, K. Haddad, M. Anane, W. Durner, A. Mlayah, Lead removal from aqueous solutions by raw sawdust and magnesium pretreated biochar experimental investigations and numerical modelling, J. Environ. Manage., 180 (2016) 439–449.
  140. J. Ren, N. Li, L. Li, J. An, L. Zhao, N. Ren, Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water, Bioresour. Technol., 178 (2015) 119–125.
  141. A.U. Rajapaksha, S.S. Chen, D.C.W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization from soil and water potential and implication of biochar modification, Chemosphere, 148 (2016) 276–291.
  142. K. Qian, A. Kumar, K. Patil, D. Bellmer, D. Wang, W. Yuan, R. Huhnke, Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char, Energies, 6 (2013) 3972–3986.
  143. L. Hadjittofi, M. Prodromou, I. Pashalidis, Activated biochar derived from cactus fibres—preparation, characterization and application on Cu(II) removal from aqueous solutions, Bioresour. Technol., 159 (2014) 460–464.
  144. Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, W. Qiu Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution, Chem. Eng. J., 242 (2014) 36–42.
  145. M.D. Huff, J.W. Lee, Biochar-surface oxygenation with hydrogen peroxide, J. Environ. Manage., 165 (2016) 17–21.
  146. J.T. Petrović, M.D. Stojanović, J.V. Milojković, M.S. Petrović, T.D. Šoštarić, M.D. Laušević, M.L. Mihajlović, Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb2+ from aqueous solution, J. Environ. Manage., 182 (2016) 292–300.
  147. J. Tang, H. Lv, Y. Gong, Y. Huang, Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal, Bioresour. Technol., 196 (2015) 355–363.
  148. M. Shang, Y. Liu, S. Liu, G. Zeng, X. Tan, L. Jiang, X. Huang, Y. Ding, Y. Guo, S. Wang, A novel graphene oxide coated biochar composite synthesis, characterization and application for Cr(VI) removal, RSC Adv., 6 (2016) 85202–85212.
  149. Y. Yi, Z. Huang, B. Lu, J. Xian, E.P. Tsang, W. Cheng, J. Fang, Z. Fang, Magnetic biochar for environmental remediation: a review, Bioresour. Technol., 298 (2020) 122468, doi: 10.1016/j. biortech.2019.122468.
  150. Y. Chen, S. Ho, D. Wang, Z. Wei, J. Chang, N. Ren, Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis, Bioresour. Technol., 247 (2018) 463–470.
  151. Y. Chen, S. Bai, R. Li, G. Su, X. Duan, S. Wang, N. Ren, S. Ho, Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact, Environ. Int., 126 (2019) 302–308.
  152. S. Zhang, Y. Ji, J. Dang, J. Zhao, S. Chen, Magnetic apple pomace biochar: simple preparation, characterization, and application for enriching Ag(I) in effluents, Sci. Total Environ., 668 (2019) 115–123.
  153. L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2 (2004) 95–108.
  154. R. Singh, D. Paul, R.K. Jain, Biofilms: implications in bioremediation, Trends Microbiol., 14 (2006) 389–397.
  155. S. Dalahmeh, L. Ahrens, M. Gros, K. Wiberg, M. Pell, Potential of biochar filters for onsite sewage treatment: adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm, Sci. Total Environ., 612 (2018) 192–201.
  156. J. Wang, S. Wang, Preparation, modification and environmental application of biochar: a review, J. Cleaner Prod., 227 (2019) 1002–1022.
  157. X. Duan, H. Sun, S. Wang, Metal-free carbocatalysis in advanced oxidation reactions, Acc. Chem. Res., 51 (2018) 678–687.
  158. M. Asadullah, I. Jahan, M.B. Ahmed, P. Adawiyah, N.H. Malek, M.S. Rahman, Preparation of microporous activated carbon and its modification for arsenic removal from water, J. Ind. Eng. Chem., 20 (2014) 887–896.
  159. Y. Xiong, Q. Tong, W. Shan, Z. Xing, Y. Wang, S. Wen, Z. Lou, Arsenic transformation and adsorption by iron hydroxide/ manganese dioxide doped straw activated carbon, Appl. Surf. Sci., 416 (2017) 618–627.
  160. S. Mondal, K. Aikat, G. Halder, Biosorptive uptake of arsenic (V) by steam activated carbon from mung bean husk: equilibrium, kinetics, thermodynamics and modeling, Appl. Water Sci., 7 (2017) 4479–4495.
  161. I. Lima, K. Ro, G. Reddy, D. Boykin, K. Klasson, I.M. Lima, K.S. Ro, G.B. Reddy, D.L. Boykin, K.T. Klasson, Efficacy of chicken litter and wood biochars and their activated counterparts in heavy metal clean up from wastewater, Agriculture, 5 (2015) 806–825.
  162. W.G. Li, X.J. Gong, K. Wang, X.R. Zhang, W.B. Fan, Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon, Bioresour. Technol., 165 (2014) 166–173.
  163. Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Sorption of heavy metals on chitosan-modified biochars and its biological effects, Chem. Eng. J., 231 (2013) 512–518.
  164. Y. Shi, R. Shan, L. Lu, H. Yuan, H. Jiang, Y. Zhang, Y. Chen, High-efficiency removal of Cr(VI) by modified biochar derived from glue residue, J. Cleaner Prod., 254 (2020) 119935, doi: 10.1016/j.jclepro.2019.119935.
  165. L.G. Boutsika, H.K. Karapanagioti, I.D. Manariotis, Aqueous mercury sorption by biochar from malt spent rootlets, Water Air Soil Pollut., 225 (2014) 1805.
  166. I.D. Manariotis, K.N. Fotopoulou, H.K. Karapanagioti, Preparation and characterization of biochar sorbents produced from malt spent rootlets, Ind. Eng. Chem. Res., 54 (2015) 9577–9584.
  167. H. Liu, S. Liang, J. Gao, H.H. Ngo, W. Guo, Z. Guo, Y. Li, Development of biochars from pyrolysis of lotus stalks for Ni(II) sorption using zinc borate as flame retardant, J. Anal. Appl. Pyrolysis, 107 (2014) 336–341.
  168. K.K. Rubeena, P. Hari Prasad Reddy, A.R. Laiju, P.V. Nidheesh, Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye, J. Environ. Manage., 226 (2018) 320–328.
  169. G.S. dos Reis, M.A. Adebayo, C.H. Sampaio, E.C. Lima, P.S. Thue, I.A.S. de Brum, S.L.P. Dias, F.A. Pavan, Removal of phenolic compounds from aqueous solutions using sludgebased activated carbons prepared by conventional heating and microwave-assisted pyrolysis, Water Air Soil Pollut., 228 (2016) 33, doi:10.1007/s11270-016-3202-7.
  170. R. Pradhananga, L. Adhikari, R. Shrestha, M. Adhikari, R. Rajbhandari, K. Ariga, L. Shrestha, Wool carpet dye adsorption on nanoporous carbon materials derived from agro-product, C-J. Carbon Res., 3 (2017) 3020012, doi: 10.3390/ c3020012.
  171. M. Li, H. Huang, S. Yu, N. Tian, F. Du, X. Dong, Y. Zhang, Simultaneously promoting charge separation and photoabsorption of BiOX (X=Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing lowcost biochar, Appl. Surf. Sci., 386 (2016) 285–295.
  172. J.H. Park, J.J. Wang, R. Xiao, N. Tafti, R.D. De Laune, D.C. Seo, Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst, Bioresour. Technol., 249 (2018) 368–376.
  173. H. Fu, S. Ma, P. Zhao, S. Xu, S. Zhan, Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: structure dependence and mechanism, Chem. Eng. J., 360 (2019) 157–170.
  174. M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing Reactive Red 141 from aqueous solutions, J. Cleaner Prod., 171 (2018) 57–65.
  175. J. Qin, Q. Chen, M. Sun, P. Sun, G. Shen, Pyrolysis temperatureinduced changes in the catalytic characteristics of rice huskderived biochar during 1,3-dichloropropene degradation, Chem. Eng. J., 330 (2017) 804–812.
  176. K.T. Klasson, C.A. Ledbetter, M. Uchimiya, I.M. Lima, Activated biochar removes 100% dibromochloropropane from field well water, Environ. Chem. Lett., 11 (2013) 271–275.
  177. G. Fang, C. Zhu, D.D. Dionysiou, J. Gao, D. Zhou, Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation, Bioresour. Technol., 176 (2015) 210–217.
  178. B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76 (2009) 127–133.
  179. S. Valili, G. Siavalas, H.K. Karapanagioti, I.D. Manariotis, K. Christanis, Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product, J. Environ. Manage., 128 (2013) 252–258.
  180. G. Fang, C. Liu, J. Gao, D.D. Dionysiou, D. Zhou, Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation, Environ. Sci. Technol., 49 (2015) 5645–5653.
  181. P. Zhang, H. Sun, L. Min, C. Ren, Biochars change the sorption and degradation of thiacloprid in soil insights into chemical and biological mechanisms, Environ. Pollut., 236 (2018) 158–167.
  182. J. Yan, L. Han, W. Gao, S. Xue, M. Chen, Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene, Bioresour. Technol., 175 (2014) 269–274.
  183. M. Uchimiya, L.H. Wartelle, I.M. Lima, K.T. Klasson, Sorption of deisopropylatrazine on broiler litter biochars,
    J. Agric. Food Chem., 58 (2010) 12350–12356.
  184. L. Chen, S. Yang, X. Zuo, Y. Huang, T. Cai, D. Ding, Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate, Chem. Eng. J., 354 (2018) 856–865.
  185. Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei, L. Luo, M. Lei, L. Tang, Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling, Bioresour. Technol., 245 (2017) 266–273.
  186. L. Kemmou, Z. Frontistis, J. Vakros, I.D. Manariotis, D. Mantzavinos, Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes, Catal. Today, 313 (2018) 128–133.
  187. S.K. Mohanty, K.B. Cantrell, K.L. Nelson, A.B. Boehm, Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow, Water Res., 61 (2014) 288–296.
  188. K. Kaetzl, M. Lübken, G. Uzun, T. Gehring, E. Nettmann, K. Stenchly, M. Wichern, On-farm wastewater treatment using biochar from local agro residues reduces pathogens from irrigation water for safer food production in developing countries, Sci. Total Environ., 682 (2019) 601–610.
  189. R. Fan, C. Chen, J. Lin, J. Tzeng, C. Huang, C. Dong, C.P. Huang, Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions, Bioresour. Technol., 272 (2019) 465–472.
  190. E. Viglašová, M. Galamboš, Z. Danková, L. Krivosudský, C.L. Lengauer, R. Hood-Nowotny, G. Soja, A. Rompel,
    M. Matík, J. Briančin, Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal, Waste Manage, 79 (2018) 385–394.
  191. Q. Yin, M. Liu, H. Ren, Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water, J. Environ. Manage., 249 (2019) 109410, doi:10.1016/j.jenvman.2019.109410.
  192. L.F. Perez-Mercado, C. Lalander, A. Joel, J. Ottoson, S. Dalahmeh, B. Vinnerås, Biochar filters as an on-farm treatment to reduce pathogens when irrigating with wastewater-polluted sources, J. Environ. Manage., 248 (2019) 109295, doi: 10.1016/j.jenvman.2019.109295.
  193. E. Tchomgui-Kamga, V. Alonzo, C.P. Nanseu-Njiki, N. Audebrand, E. Ngameni, A. Darchen, Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water, Carbon, 48 (2010) 333–343.
  194. Z. Ajmal, A. Muhmood, R. Dong, S. Wu, Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal, J. Environ. Manage., 253 (2020) 109730, doi:10.1016/j.jenvman.2019.109730.
  195. Y. Dai, N. Zhang, C. Xing, Q. Cui, Q. Sun, The adsorption, regeneration and engineering applications of biochar for removal of organic pollutants: a review, Chemosphere, 223 (2019) 12–27.
  196. Y.P. Qiu, Z.Z. Zheng, Z.L. Zhou, G.D. Sheng, Effectiveness and mechanisms of dye adsorption on a straw-based biochar, Bioresour. Technol., 100 (2009) 5348–5351.
  197. S.S. Fan, Y. Wang, Z. Wang, J. Tang, X.D. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
  198. Q. Yin, B. Zhang, R. Wang, Z. Zhao, Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review, Environ. Sci. Pollut. Res., 24 (2017) 26297–26309.
  199. X. Hu, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, Y. Zhang, C. Ma, Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel, Sci. Total Environ., 707 (2020) 135544, doi: 10.1016/j. scitotenv.2019.135544.
  200. X. Wu, Y. Zhang, X. Dou, M. Yang, Fluoride removal performance of a novel Fe-AlCe trimetal oxide adsorbent, Chemosphere, 69 (2007) 1758–1764.
  201. J. Fan, X. Chen, Z.B. Xu, X.Y. Xu, L. Zhao, H. Qiu, X.D. Cao, One pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation, J. Hazard. Mater., 398 (2020) 122901, doi: 10.1016/j.jhazmat.2020.122901.
  202. H. Zhang, R. Xiao, R.H. Li, A. Ali, A. Chen, Z.Q. Zhang, Enhanced aqueous Cr(VI) removal using chitosan-modified magnetic biochars derived from bamboo residues, Chemosphere, 261 (2020) 127694, doi:10.1016/j.chemosphere.2020.127694.
  203. R. Gao, H. Hu, Q. Fu, Z. Li, Z. Xing, U. Ali, J. Zhu, Y. Liu, Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: speciation transformation, risk evaluation and mechanism inquiry, Sci. Total Environ., 730 (2020) 139119, doi: 10.1016/j.scitotenv.2020.139119.
  204. G.C. Tan, N. Xu, Y.R. Xu, H.Y. Wang, W.L. Sun, Sorption of mercury(II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution, Bioresour. Technol., 211 (2016) 727–735.
  205. N. Li, M.L. Yin, D.C.W. Tsang, S.T. Yang, J. Liu, X. Li, G. Song, J. Wang, Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: a comparison between raw and modified biochar, Sci. Total Environ., 697 (2019) 134115, doi: 10.1016/j.scitotenv.2019.134115.
  206. M.C. Wang, G.D. Sheng, Y.P. Qiu, A novel manganese-oxide/ biochar composite for efficient removal of lead(II) from aqueous solutions, Int. J. Environ. Sci. Technol., 12 (2015) 1719–1726.
  207. S.S. Fan, Y. Wang, Y. Li, Z. Wang, Z.X. Xie, J. Tang, Removal of tetracycline from aqueous solution by biochar derived from rice straw, Environ. Sci. Pollut. Res., 25 (2018) 29529–29540.
  208. J.L. Liu, B.Q. Zhou, H. Zhang, J. Ma, B. Mu, W.B. Zhang, A novel biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution, Bioresour. Technol., 294 (2019) 122152, doi:10.1016/j.biortech.2019.122152.
  209. S.M. Taha, M.E. Amer, A.E. Elmarsafy, M.Y. Elkady, Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water, J. Environ. Chem. Eng., 2 (2014) 2013–2025.
  210. M. Vithanage, S.S. Mayakaduwa, I. Herath, Y.S. Ok, D. Mohan, Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks, Chemosphere, 150 (2015) 781–789.
  211. J. Cui, F. Zhang, H. Li, J. Cui, Y. Ren, X. Yu, Recent progress in biochar-based photocatalysts for wastewater treatment: synthesis, mechanisms, and applications, Appl. Sci., 10 (2020) 1019, doi: 10.3390/app10031019.
  212. P. Lisowski, J.C. Colmenares, O. Mašek, W. Lisowski, D. Lisovytskiy, A. Kamińska, D. Łomot, Dual functionality of TiO2/biochar hybrid materials: photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase, ACS Sustainable Chem. Eng., 5 (2017) 6274–6287.
  213. J. Matos, Eco-friendly heterogeneous photocatalysis on biochar-based materials under solar irradiation, Top. Catal., 59 (2016) 394–402.
  214. T.G. Ambaye, M. Vaccari, E.D. van Hullebusch, A. Amrane, S. Rtimi, Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater, Int. J. Environ. Sci. Technol., 18 (2021) 3273–3294.
  215. H. Zhang, Z. Wang, R. Li, J. Guo, Y. Li, J. Zhu, X. Xie, TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices, Chemosphere, 185 (2017) 351–360.
  216. L. Lu, R. Shan, Y. Shi, S. Wang, H. Yuan, A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange, Chemosphere, 222 (2019) 391–398.
  217. N. Zhu, C. Li, L. Bu, C. Tang, S. Wang, P. Duan, L. Yao, J. Tang, D.D. Dionysiou, Y. Wu, Bismuth impregnated biochar for efficient estrone degradation: the synergistic effect between biochar and Bi/Bi2O3 for a high photocatalytic performance, J. Hazard. Mater., 384 (2020) 121258, doi: 10.1016/j. jhazmat.2019.121258.
  218. C. Li, G. Zhao, T. Yan, T. Zhang, X. Liu, X. Long, H. Duan, F. Jiao, Enhanced visible-light-induced photocatalytic performance of Bi2O3/ZnAl-LDH-C for dyes removal in water, Mater. Lett., 244 (2019) 215–218.
  219. A. Kumar, G. Sharma, M. Naushad, A. Kumar, S. Kalia, C. Guo, G.T. Mola, Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photodegradation of methyl paraben and pesticide removal from soil, J. Photochem. Photobiol., A, 337 (2017) 118–131.
  220. N. Gao, Z. Lu, X. Zhao, Z. Zhu, Y. Wang, D. Wang, Z. Hua, C. Li, P. Huo, M. Song, Enhanced photocatalytic activity of a double conductive C/Fe3O4/Bi2O3 composite photocatalyst based on biomass, Chem. Eng. J., 304 (2016) 351–361.
  221. S. Li, Z. Wang, X. Xie, G. Liang, X. Cai, X. Zhang, Z. Wang, Fabrication of vessel–like biochar–based heterojunction photocatalyst Bi2S3/BiOBr/BC for diclofenac removal under visible LED light irradiation: mechanistic investigation and intermediates analysis, J. Hazard. Mater., 391 (2019) 121407, doi:10.1016/j.jhazmat.2019.121407.
  222. M. Li, H. Huang, S. Yu, N. Tian, F. Dong, X. Du, Y. Zhang, Simultaneously promoting charge separation and photoabsorption of BiOX (X=Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing lowcost biochar, Appl. Surf. Sci., 386 (2016) 285–295.
  223. S. Li, Z. Wang, X. Zhao, X. Yang, G. Liang, X. Xie, Insight into enhanced carbamazepine photodegradation over biocharbased magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation, Chem. Eng. J., 360 (2019) 600–611.
  224. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391 (2017) 72–123.
  225. A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler, A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants - Synergism of adsorption, photocatalysis, and photo-ozonation, J. Cleaner Prod., 165 (2017) 431–451.
  226. Y. Zheng, Y. Yang, Y. Zhang, W. Zou, Y. Luo, L. Dong, B. Gao, Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation, Biochar, 1 (2019) 89–96.
  227. A. Kumar, A. Kumar, G. Sharma, A.A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, C. Guo, F.J. Stadler, Biochartemplated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photodegradation of paraquat, nitrophenol reduction and CO2 conversion, Chem. Eng. J., 339 (2018) 393–410.
  228. K. Li, Z. Huang, S. Zhu, S. Luo, L. Yan, Y. Dai, Y. Guo, Y. Yang, Removal of Cr(VI) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems, Appl. Catal., B, 243 (2019) 386–396.
  229. L. Zhang, Z. Jin, S. Huang, X. Huang, B. Xu, L. Hu, H. Cui, S. Ruan, Y.J. Zeng, Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution, Appl. Catal., B, 246 (2019) 61–71.
  230. A.S.K. Kumar, J.G. You, W.B. Tseng, G.D. Dwivedi, N. Rajesh, S.J. Jiang, W.L. Tseng, Magnetically separable nanospherical g-C3N4@Fe3O4 as a recyclable material for chromium adsorption and visible-light-driven catalytic reduction of aromatic nitro compounds, ACS Sustainable Chem. Eng., 7 (2019) 6662–6671.
  231. J.G. Kim, H.B. Kim, G.S. Yoon, S.H. Kim, S.J. Min, D.C.W. Tsang, K. Baek, Simultaneous oxidation and adsorption of arsenic by one-step fabrication of alum sludge and graphitic carbon nitride (g-C3N4), J. Hazard. Mater., 383 (2020) 121138, doi: 10.1016/j.jhazmat.2019.121138.
  232. X. Chen, L. Fu, Y. Yu, C. Wu, M. Li, X. Jin, J. Yang, P. Wang, Y. Chen, Recent development in sludge biochar-based catalysts for advanced oxidation processes of wastewater, Catalysts, 11 (2021) 1275, doi:10.3390/catal11111275.
  233. J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn, M. Titirici, Biomass-derived carbon quantum dot sensitizers for solidstate nanostructured solar cells, Angew. Chem. Int. Ed., 54 (2015) 4463–4468.
  234. M. Hassan, V.G. Gomes, A. Dehghani, S.M. Ardekani, Engineering carbon quantum dots for photomediated theranostics, Nano Res., 11 (2018) 1–41.
  235. J. Zhang, Y. Ma, Y. Du, H. Jiang, D. Zhou, S. Dong, Carbon nanodots/WO3 nanorods Z-scheme composites: remarkably enhanced photocatalytic performance under broad spectrum, Appl. Catal., B, 209 (2017) 253–264.
  236. X. Yao, C. Ma, H. Huang, Z. Zhu, H. Dong, C. Li, W. Zhang, Y. Yan, Y. Liu, Solvothermal-assisted synthesis of biomass carbon quantum dots/bismuth oxyiodide microflower for enhanced photocatalytic activity, Nano, 13 (2018) 1850031, doi: 10.1142/S1793292018500315.
  237. T. Wang, X. Liu, Q. Men, C. Ma, Y. Liu, W. Ma, Z. Liu, M. Wei, C. Li, Y. Yan, Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum dot/Bi4Ti3O12 nanosheets, Chin. J. Catal., 40 (2019) 886–894.
  238. D.C. Botia, M.S. Rodriguez, V.M. Sarria, Evaluation of UV/TiO2 and UV/ZnO photocatalytic systems coupled to a biological process for the treatment of bleaching pulp mill effluent, Chemosphere, 89 (2012) 732–736.
  239. V. Ramya, D. Murugan, C. Lajapathirai, A. Sivasamy, Activated carbon (prepared from secondary sludge biomass) supported semiconductor zinc oxide nanocomposite photocatalyst for reduction of Cr(VI) under visible light irradiation, J. Environ. Chem. Eng., 6 (2018) 7327–7337.
  240. K. Guan, P.J. Zhou, J.Y. Zhang, L.L. Zhu, Synthesis and characterization of ZnO@RSDBC composites and their photooxidative degradation of Acid Orange 7 in water, J. Mol. Struct., 1203 (2020) 127425, doi:10.1016/j.molstruc.2019.127425.
  241. S. Barathi, N. Vasudevan, Bioremediation of crude oil contaminated soil by bioaugmentation of Pseudomonas fuorescens NS1, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 38 (2003) 1857–1866.
  242. A. Partovinia, B. Rasekh, Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments, Crit. Rev. Env. Sci. Technol., 48 (2018) 1–38.
  243. N.J. Pino, L.M. Muñera, G.A. Peñuela, Bioaugmentation with immobilized microorganisms to enhance phytoremediation of PCB-contaminated soil, J. Soil Contam., 25 (2016) 419–430.
  244. B.L. Chen, M.X. Yuan, L.B. Qian, Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers, J. Soils Sediments, 12 (2012) 1350–1359.
  245. X.P. Zhang, Y.S. Li, H. Li, Enhanced bio-immobilization of Pb contaminated soil by immobilized bacteria with biochar as carrier, Pol. J. Environ. Stud., 26 (2017) 413–418.
  246. L. Liang, F. Xi, W. Tan, X. Meng, B. Hu, X. Wang, Review of organic and inorganic pollutants removal by biochar and biochar-based composites,. Biochar, 3 (2021) 255–281.
  247. S.K. Mohanty, R. Valenca, A.W. Berger, I.K.M. Yu, X.N. Xiong, T.M. Saunders, D.C.W. Tsang, Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment, Sci. Total Environ., 625 (2018) 1644–1658.
  248. P. Baltrėnas, E. Baltrėnaitė, J. Kleiza, J. Švedienė, A biocharbased medium in the biofiltration system: Removal efficiency, microorganism propagation, and the medium penetration modeling, J. Air Waste Manage. Assoc., 66 (2016) 673–686.
  249. A. Deepa, P. Prakash, B.K. Mishra, Performance of biochar based filtration bed for the removal of Cr(VI) from pre-treated synthetic tannery wastewater, Environ. Technol., 42 (2019) 257–269.
  250. A. Prado, R. Berenguer, A. Esteve-Núñez, Electroactive biochar outperforms highly conductive carbon materials for degrading pollutants by enhancing microbial extracellular electron transfer, Carbon, 146 (2019) 597–609.
  251. J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak, C. Sumby, Mixed matrix membranes, Angew. Chem., 56 (2017) 9292–9310.
  252. T. Xie, K.R. Reddy, C.W. Wang, E. Yargicoglu, K. Spokas, Characteristics and applications of biochar for environmental remediation: a review, Crit. Rev. Env. Sci. Technol., 45 (2015) 939–969.
  253. J. He, Y. Song, J.P. Chen, Development of a novel biochar/ PSF mixed matrix membrane and study of key parameters in treatment of copper and lead contaminated water, Chemosphere, 186 (2017) 1033–1045.
  254. A. Ghaffar, X.Y. Zhu, B. Chen, Biochar composite membrane for high performance pollutant management: Fabrication, structural characteristics and synergistic mechanisms, Environ. Pollut., 233 (2018) 1013–1023.
  255. H.W. Liang, Q.F. Guan, L.F. Chen, Z. Zhu, S.H. Yu, Macroscopic scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications, Angew. Chem. Int. Ed., 124 (2012) 5191–5195.
  256. Z.Q. Wang, P.X. Jin, M. Wang, C.H. Wu, C. Dong, A. Wu, Biomass-derived porous carbonaceous aerogel as sorbent for oil-spill remediation, ACS Appl. Mater. Interfaces, 8 (2016) 32862–32868.
  257. H. Liu, Y.F. Wei, J.M. Luo, T. Li, D. Wang, S.L. Luo, J.C. Crittenden, 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water, Chem. Eng. J., 368 (2019) 639–648.
  258. M.Y. Zhang, L.H. Song, H.F. Jiang, S. Li, Y.F. Shao, J.Q. Yang, J.F. Li, Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions, J. Mater. Chem. A, 5 (2017) 3434–3446.
  259. X.C. Nguyen, Q.V. Ly, T.T.H. Nguyen, H.T.T. Ngo, Y. Hu, Z. Zhang, Potential application of machine learning for exploring adsorption mechanisms of pharmaceuticals onto biochars, Chemosphere, 287 (2022) 132203, doi:10.1016/j. chemosphere.2021.132203.