References
- M.J. Hao, M.Q. Qiu, H. Yang, B.W. Hu, X.X. Wang, Recent
advances on preparation and environmental applications
of MOF-derived carbons in catalysis, Sci. Total Environ.,
760 (2021) 143333, doi:10.1016/j.scitotenv.2020.143333.
- L. Yao, H. Yang, Z.S. Chen, M.Q. Qiu, B.W. Hu, X.X. Wang,
Bismuth oxychloride-based materials for the removal of organic
pollutants in wastewater, Chemosphere, 273 (2020) 128576,
doi:10.1016/j.chemosphere.2020.128576.
- X.L. Liu, H.W. Pang, X.W. Liu, Q. Li, N. Zhang, L. Mao,
M.Q. Qiu, B.W. Hu, H. Yang, X.K. Wang, Orderly porous
covalent organic frameworks-based materials: superior
adsorbents for pollutants removal from aqueous solutions,
The Innovation, 2 (2021) 100076, doi: 10.1016/j.xinn.2021.100076.
- X.L. Liu, R. Ma, L. Zhuang, B.W. Hu, J.R. Chen, X.Y. Liu,
X.K. Wang, Recent developments of doped g-C3N4 photocatalysts
for the degradation of organic pollutants, Crit. Rev.
Env. Sci. Technol., 51 (2021) 751–790.
- T.M. Huggins, A. Haeger, J.C. Biffinger, Z.Y.J. Ren, Granular
biochar compared with activated carbon for wastewater
treatment and resource recovery, Water Res., 94 (2016) 225–232.
- J. Lehmann, S. Joseph, Biochar for Environmental Management:
An Introduction, J. Lehmann, S. Joseph, Eds., Biochar for
Environmental Management, Routledge, 2015, pp. 33–46.
- A. Downie, A. Crosky, P. Munroe, Physical Properties of
Biochar, J. Lehmann, S. Joseph, Eds., Biochar for Environmental
Management, Routledge, 2012, pp. 45–64.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen, Progress
in the preparation and application of modified biochar for
improved contaminant removal from water and wastewater,
Bioresour. Technol., 214 (2016) 836–851.
- M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan,
D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent
for contaminant management in soil and water: a review,
Chemosphere, 99 (2014) 19–33.
- K.N. Palansooriya, Y. Yang, Y.F. Tsang, B. Sarkar, D. Hou,
X. Cao, E. Meers, J. Rinklebe, K.H. Kim, Y.S. Ok, Occurrence
of contaminants in drinking water sources and the potential of
biochar for water quality improvement: a review, Crit. Rev. Env.
Sci. Technol., 50 (2020) 549–611.
- Y. Tan, X. Wan, X. Ni, L. Wang, T. Zhou, H. Sun, N. Wang, X. Yin,
Efficient removal of Cd(II) from aqueous solution by chitosan
modified kiwi branch biochar, Chemosphere, 289 (2021) 133251,
doi:10.1016/j.chemosphere.2021.133251.
- R. Liu, H. Wang, L. Han, B. Hu, M. Qiu, Reductive and
adsorptive elimination of U(VI) ions in aqueous solution by
SFeS@biochar composites, Environ. Sci. Pollut. Res., 28 (2021)
55176–55185.
- J.F. Chin, Z.W. Heng, H.C. Teoh, W.C. Chong, Y.L. Pang, Recent
development of magnetic biochar crosslinked chitosan on heavy
metal removal from wastewater – modification, application
and mechanism, Chemosphere, (2021) 133035, doi: 10.1016/j.
chemosphere.2021.133035.
- I. Ihsanullah, M.T. Khan, M. Zubair, M. Bilal, M. Sajid,
Removal of pharmaceuticals from water using sewage sludgederived
biochar: a review, Chemosphere, 289 (2021) 133196,
doi:10.1016/j.chemosphere.2021.133196.
- W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D.C.W. Tsang,
Y.S. Ok, B. Gao, Biochar technology in wastewater treatment: a
critical review, Chemosphere, 252 (2020) 126539,
doi: 10.1016/j.chemosphere.2020.126539.
- N. Hagemann, K. Spokas, H.P. Schmidt, R. Kägi, M.A. Böhler,
T.D. Bucheli, Activated carbon, biochar and charcoal: linkages
and synergies across pyrogenic carbon’s ABCs, Water, 10 (2018)
182, doi:10.3390/w10020182.
- P.K. Swain, L.M. Das, S.N. Naik, Biomass to liquid: a prospective
challenge to research and development in 21st century,
Renewable Sustainable Energy Rev., 15 (2011) 4917–4933.
- K. Qian, A. Kumar, H. Zhang, D. Bellmer, R. Huhnke, Recent
advances in utilization of biochar, Renewable Sustainable
Energy Rev., 42 (2015) 1055–1064.
- J. Lehmann, M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday,
D. Crowley, Biochar effects on soil biota –
a review, Soil Biol.
Biochem., 43 (2011) 1812–1836.
- B.A. Akinyemi, A. Adesina, Recent advancements in the use of
biochar for cementitious applications: a review, J. Build. Eng.,
32 (2020) 101705, doi: 10.1016/j.jobe.2020.101705.
- S. Li, C.Y. Chan, M. Sharbatmaleki, H. Trejo, S. Delagah,
Engineered biochar production and its potential benefits in a
closed-loop water-reuse agriculture system, Water, 12 (2020)
2847, doi: 10.3390/w12102847.
- A. Demirbas, Effects of temperature and particle size on bio–char yield from pyrolysis of agricultural residues, J. Anal. Appl.
Pyrolysis, 4 (2004) 221–225.
- Y. Chhiti, M. Kemiha, Thermal conversion of biomass, pyrolysis
and gasification, Int. J. Eng. Sci., 2 (2013) 75–85.
- A.V. Bridgwater, P. Carson, M. Coulson, A comparison of fast
and slow pyrolysis liquids from mallee, Int. J. Global Energy
Issues, 27 (2007) 204–216.
- Z.B. Laougé, A.S. Çığgın, H. Merdun, Optimization and
characterization of bio-oil from fast pyrolysis of Pearl Millet and
Sida cordifolia L. by using response surface methodology, Fuel,
274 (2020) 117842, doi:10.1016/j.fuel.2020.117842.
- N. Priharto, F. Ronsse, G. Yildiz, H.J. Heeres, P.J. Deuss,
W. Prins, Fast pyrolysis with fractional condensation of ligninrich
digested stillage from second-generation bioethanol
production, J. Anal. Appl. Pyrolysis, 145 (2020) 104756, doi:
10.1016/j.jaap.2019.104756.
- S.T. Gopakumar, Bio-oil Production Through Fast Pyrolysis and
Upgrading to “Green” Transportation Fuels,
A Dissertation,
Doctor of Philosophy–The Graduate Faculty of Auburn
University, Alabama, 2012, p. 196.
- T. Yuan, W. He, G. Yin, S. Xu, Comparison of bio-chars
formation derived from fast and slow pyrolysis of walnut shell,
Fuel, 261 (2020) 116450, doi: 10.1016/j.fuel.2019.116450.
- J. Park, Y. Lee, C. Ryu, Y.K. Park, Slow pyrolysis of rice straw
analysis of products properties, carbon and energy yields,
Bioresour. Technol., 155 (2014) 63–70.
- B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C. Tsang,
D. Hou, Effect of pyrolysis temperature, heating rate, and
residence time on rapeseed stem derived biochar, J. Cleaner
Prod., 174 (2018) 977–987.
- T. Sharma, Biochar and Other Properties Resulting from
the Gasification and Combustion of Biomass with Different
Components, Ph.D. (Doctor of Philosophy) Thesis University of
Iowa, 2019.
- R.C. Saxena, D. Seal, S. Kumar, H.B. Goyal, Thermo-chemical
routes for hydrogen rich gas from biomass:
a review, Renewable
Sustainable Energy Rev., 12 (2008) 1909–1927.
- K. Zhang, J. Chang, Y. Guan, H. Chen, Y. Yang, J. Jiang,
Lignocellulosic biomass gasification technology in China,
Renewable Energy, 49 (2013) 175–184.
- A. Kruse, Hydrothermal biomass gasification, J. Supercrit.
Fluids, 47 (2009) 391–399.
- P. Parthasarathy, K.S. Narayanan, Hydrogen production from
steam gasification of biomass influence of process parameters on
hydrogen yield – a review, Renewable Energy, 66 (2014) 570–579.
- Y. Matsumura, Chapter 9 – Hydrothermal Gasification of
Biomass, A. Pandey, T. Bhaskar, M. Stöcker, R.K. Sukumaran,
Eds., Recent Advances in Thermo-Chemical Conversion of
Biomass, Elsevier B.V., Amsterdam,
The Netherlands, 2015,
pp. 251–267.
- K.R. Khalilpour, Ed., Polygeneration with Polystorage for
Chemical and Energy Hubs, Academic Press, 2018.
- M. Lucian, L. Fiori, Hydrothermal carbonization of waste
biomass: process design, modeling, energy efficiency and cost
analysis, Energies, 10 (2017) 211, doi: 10.3390/en10020211.
- M. Ahmad, S.S. Lee, X.M. Dou, D. Mohan, J.K. Sung, J.E. Yang,
Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and
peanut shell-derived biochar properties and TCE adsorption in
water, Bioresour. Technol., 118 (2012) 536–544.
- W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.-M. Fortuna,
I. Dallmeyer, M. Garcia-Perez, Influence of feedstock source and
pyrolysis temperature on biochar bulk and surface properties,
Biomass Bioenergy, 84 (2016) 37–48.
- X.P. Gai, H.Y. Wang, J. Liu, L.M. Zhai, S. Liu, T.Z. Ren,
H.B. Liu, Effects of feedstock and pyrolysis temperature on
biochar adsorption of ammonium and nitrate, PLoS One,
9 (2014) e113888, doi:10.1371/journal.pone.0113888.
- P. Devi, A.K. Saroha, Effect of pyrolysis temperature on polycyclic
aromatic hydrocarbons toxicity and sorption behaviour
of biochars prepared by pyrolysis of paper mill effluent
treatment plant sludge, Bioresour. Technol., 192 (2015) 312–320.
- F. Lian, B.B. Sun, Z.G. Song, L.Y. Zhu, X.H. Qi, B.S. Xing,
Physicochemical properties of herb-residue biochar and its
sorption to ionizable antibiotic sulfamethoxazole, Chem. Eng.
J., 248 (2014) 128–134.
- N. Claoston, A.W. Samsuri, M.H. Ahmad Husni, M.S.M. Amran,
Effects of pyrolysis temperature on the physicochemical
properties of empty fruit bunch and rice husk biochars, Waste
Manage. Res., 32 (2014) 331–339.
- X.D. Cao, L.N. Ma, B. Gao, W. Harris, Dairy-manure derived
biochar effectively sorbs lead and atrazine, Environ. Sci.
Technol., 43 (2009) 3285–3291.
- J.K. Sun, F. Lian, Z.Q. Liu, L.Y. Zhu, Z.G. Song, Biochars derived
from various crop straws: characterization and Cd(II) removal
potential, Ecotoxicol. Environ. Saf., 106 (2014) 226–231.
- K.H. Kim, J.Y. Kim, T.S. Cho, J.W. Choi, Influence of pyrolysis
temperature on physicochemical properties of biochar obtained
from the fast pyrolysis of pitch pine (Pinus rigida), Bioresour.
Technol., 118 (2012) 158–162.
- M. Essandoh, B. Kunwar, C.U. Pittman, D. Mohan, T. Mlsna,
Sorptive removal of salicylic acid and ibuprofen from aqueous
solutions using pine wood fast pyrolysis biochar, Chem. Eng. J.,
265 (2015) 219–227.
- M. Laghari, M.S. Mirjat, Z.Q. Hu, S. Fazal, B. Xiao, M.A. Hu,
Z.H. Chen, D.B. Guo, Effects of biochar application rate on
sandy desert soil properties and sorghum growth, Catena,
135 (2015) 313–320.
- M. Laghari, Z.Q. Hu, M.S. Mirjat, B. Xiao, A.A. Tagar, M. Hu,
Fast pyrolysis biochar from sawdust improves the quality of
desert soils and enhances plant growth, J. Sci. Food Agric.,
96 (2016) 199–206.
- S. Gupta, H.W. Kua, S. Dai Pang, Biochar-mortar composite
manufacturing, evaluation of physical properties and economic
viability, Constr. Build. Mater., 167 (2018) 874–889.
- E. Sørmo, L. Silvani, G. Thune, H. Gerber, H.P. Schmidt,
A.B. Smebye, G. Cornelissen, Waste timber pyrolysis in a medium-scale
unit emission budgets and biochar quality, Sci. Total
Environ., 718 (2020) 137335, doi:10.1016/j.scitotenv.2020.137335.
- P. Kim, A.M. Johnson, M.E. Essington, M. Radosevich,
W.-T. Kwon, S.-H. Lee, T.G. Rials, T.G. Labbé, Effect of pH
on surface characteristics of switchgrass-derived biochars
produced by fast pyrolysis, Chemosphere, 90 (2013) 2623–2630.
- Y. Zhang, X. Xu, P. Zhang, L. Zhao, H. Qiu, X. Cao, Pyrolysistemperature
depended quinone and carbonyl groups as
the electron accepting sites in barley grass derived biochar,
Chemosphere, 232 (2019) 273–280.
- S.D. Ferreira, I.P. Lazzarotto, J. Junges, C. Manera, M. Godinho,
E. Osório, Steam gasification of biochar derived from elephant
grass pyrolysis in a screw reactor, Energy Convers. Manage.,
153 (2017) 163–174.
- P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu,
Modification of bio-char derived from fast pyrolysis of biomass
and its application in removal of tetracycline from aqueous
solution, Bioresour. Technol., 121 (2012) 235–240.
- S. Gupta, H.W. Kua, Application of rice husk biochar as filler
in cenosphere modified mortar: preparation, characterization
and performance under elevated temperature, Constr.
Build. Mater., 253 (2020) 119083, doi: 10.1016/j.conbuildmat.
2020.119083.
- S. Muthukrishnan, S. Gupta, H.W. Kua, Application of rice husk
biochar and thermally treated low silica rice husk ash to improve
physical properties of cement mortar, Theor. Appl. Fract.
Mech., 104 (2019) 102376, doi:10.1016/j.tafmec.2019.102376.
- L. Wang, N.S. Bolan, D.C. Tsang, D. Hou, Green immobilization
of toxic metals using alkaline enhanced rice husk biochar:
effects of pyrolysis temperature and KOH concentration, Sci.
Total Environ., 720 (2020) 137584, doi: 10.1016/j.scitotenv.2020.137584.
- O. Masek, V. Budarin, M. Gronnow, K. Crombie, P. Brownsort,
E. Fitzpatrick, P. Hurst, Microwave and slow pyrolysis biochar
– comparison of physical and functional properties, J. Anal.
Appl. Pyrolysis, 100 (2013) 41–48.
- R. Chintala, J. Mollinedo, T.E. Schumacher, S.K. Papiernik,
D.D. Malo, D.E. Clay, S. Kumar, D.W. Gulbrandson, Nitrate
sorption and desorption in biochars from fast pyrolysis,
Microporous Mesoporous Mater., 179 (2013) 250–257.
- S.S. Lam, P.N.Y. Yek, Y.S. Ok, C.C. Chong, R.K. Liew,
D.C.W. Tsang, Y.K. Park, Z.L. Liu, C.S. Wong, W.X. Peng,
Engineering pyrolysis biochar via single-step microwave steam
activation for hazardous landfill leachate treatment, J. Hazard.
Mater., 390 (2020) 121649, doi: 10.1016/j.jhazmat.2019.121649.
- G. Chu, J. Zhao, F.Y. Chen, X.D. Dong, D.D. Zhou, N. Liang,
M. Wu, B. Pan, C.E.W. Steinberg, Physicochemical and sorption
properties of biochars prepared from peanut shell using
thermal pyrolysis and microwave irradiation, Environ. Pollut.,
227 (2017), 372–379.
- D. Bhaduri, A. Saha, D. Desai, H.N. Meena, Restoration of
carbon and microbial activity in salt-induced soil by application
of peanut shell biochar during short term incubation study,
Chemosphere, 148 (2016) 86–98.
- J. Yang, G. Ji, Y. Gao, W. Fu, M. Irfan, L. Mu, A. Li, High-yield
and high-performance porous biochar produced from pyrolysis
of peanut shell with low-dose ammonium polyphosphate
for chloramphenicol adsorption,
J. Cleaner Prod., 264 (2020)
121516, doi: 10.1016/j.jclepro.2020.121516.
- M. Lubwama, V.A. Yiga, Development of groundnut shells
and bagasse briquettes as sustainable fuel sources for domestic
cooking applications in Uganda, Renewable Energy, 111 (2017)
532–542.
- I.Y. Mohammed, Y.A. Abakr, M. Musa, S. Yusup, A. Singh,
F.K. Kazi, Valorization of Bambara groundnut shell via intermediate
pyrolysis products distribution and characterization,
J. Cleaner Prod., 139 (2016) 717–728.
- M.K. Awasthi, Y. Duan, S.K. Awasthi, T. Liu, Z. Zhang, Influence
of bamboo biochar on mitigating greenhouse gas emissions and
nitrogen loss during poultry manure composting, Bioresour.
Technol., 303 (2020) 122952, doi: 10.1016/j.biortech.2020.122952.
- J. Alchouron, C. Navarathna, H.D. Chludil, N.B. Dewage,
F. Perez, C.U. Pittman Jr., T.E. Mlsna, Assessing South American
Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle
dispersed analogues for aqueous arsenic(V) remediation, Sci. Total
Environ., 706 (2020) 135943, doi: 10.1016/j.scitotenv.2019.135943.
- Z. Hilioti, C.M. Michailof, D. Valasiadis, E.F. Iliopoulou,
V. Koidou, A.A. Lappas, Characterization of castor plantderived
biochars and their effects as soil amendments on
seedlings, Biomass Bioenergy, 105 (2017) 96–106.
- S. Biswas, S.S. Mohapatra, U. Kumari, B.C. Meikap,
T.K. Sen, Batch and continuous closed circuit semi-fluidized
bed operation removal of MB dye using sugarcane bagasse
biochar and alginate composite adsorbents,
J. Environ. Chem.
Eng., 8 (2020) 103637, doi: 10.1016/j.jece.2019.103637.
- A.Z. Khan, S. Khan, T. Ayaz, M.L. Brusseau, M.A. Khan,
J. Nawab, S. Muhammad, Popular wood and sugarcane bagasse
biochars reduced uptake of chromium and lead by lettuce from
mine-contaminated soil, Environ. Pollut., 263 (2020) 114446,
doi: 10.1016/j.envpol.2020.114446.
- Y.H. Tang, S.H. Liu, D.C. Tsang, Microwave-assisted
production of CO2-activated biochar from sugarcane bagasse
for electrochemical desalination, J. Hazard Mater., 383 (2020)
121192, doi:10.1016/j.jhazmat.2019.121192.
- M. Carrier, A.G. Hardie, Ü. Uras, J. Görgens, J.H. Knoetze,
Production of char from vacuum pyrolysis of South-African
sugar cane bagasse and its characterization as activated carbon
and biochar, J. Anal. Appl. Pyrolysis, 96 (2012) 24–32.
- P. Llorach-Massana, E. Lopez-Capel, J. Peña, J. Rieradevall,
J.I. Montero, N. Puy, Technical feasibility and carbon footprint
of biochar co-production with tomato plant residue, Waste
Manage., 67 (2017) 121–130.
- J.O. Eduah, E.K. Nartey, M.K. Abekoe, H. Breuning-Madsen,
M.N. Andersen, Phosphorus retention and availability in three
contrasting soils amended with rice husk and corn cob biochar
at varying pyrolysis temperatures, Geoderma, 341 (2019)
10–17.
- E. Amoakwah, K.A. Frimpong, D. Okae-Anti, E. Arthur, Soil
water retention, air flow and pore structure characteristics
after corn cob biochar application to a tropical sandy loam,
Geoderma, 307 (2017) 189–197.
- S. Xue, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, C. Ma,
Food waste based biochars for ammonia nitrogen removal from
aqueous solutions, Bioresour. Technol., 292 (2019) 121927, doi:10.1016/j.biortech.2019.121927.
- A.D. Igalavithana, S.W. Choi, P.D. Dissanayake, J. Shang,
C.H. Wang, X. Yang, Y.S. Ok, Gasification biochar from
biowaste (food waste and wood waste) for effective CO2
adsorption, J. Hazard Mater., 391 (2019) 121147, doi: 10.1016/j.jhazmat.2019.121147.
- N. Khan, P. Chowdhary, A. Ahmad, B.S. Giri, P. Chaturvedi,
Hydrothermal liquefaction of rice husk and cow dung in mixedbed-
rotating pyrolyzer and application of biochar for dye
removal, Bioresour. Technol., 309 (2020) 123294, doi: 10.1016/j.
biortech.2020.123294.
- Q. Chen, J. Qin, P. Sun, Z. Cheng, G. Shen, Cow dung-derived
engineered biochar for reclaiming phosphate from aqueous
solution and its validation as slow-release fertilizer in soil-crop
system, J. Cleaner Prod., 172 (2018) 2009–2018.
- S.V. Novais, M.D.O. Zenero, J. Tronto, R.F. Conz, C.E.P. Cerri,
Poultry manure and sugarcane straw biochars modified
with MgCl2 for phosphorus adsorption, J. Environ. Manage.,
214 (2018) 36–44.
- H. Chen, S.K. Awasthi, T. Liu, Y. Duan, X. Ren, Z. Zhang,
M.K. Awasthi, Effects of microbial culture and chicken manure
biochar on compost maturity and greenhouse gas emissions
during chicken manure composting,
J. Hazard Mater.,
389 (2019) 121908, doi: 10.1016/j.jhazmat.2019.121908.
- J. Zhang, J. Shao, Q. Jin, X. Zhang, H. Yang, Y. Chen, H. Chen,
Effect of deashing on activation process and lead adsorption
capacities of sludge-based biochar, Sci. Total Environ.,
716 (2020) 137016, doi:10.1016/j.scitotenv.2020.137016.
- Y.F. Huang, Y.Y. Huang, P.T. Chiueh, S.L. Lo, Heterogeneous
Fenton oxidation of trichloroethylene catalyzed by sewage
sludge biochar: experimental study and life cycle assessment,
Chemosphere, 249 (2020) 126139, doi:10.1016/j.chemosphere.
2020.126139.
- M. Rizwan, Q. Lin, X. Chen, Y. Li, G. Li, X. Zhao, Y. Tian,
Synthesis, characterization and application of magnetic and
acid modified biochars following alkaline pretreatment of
rice and cotton straws, Sci. Total Environ., 714 (2020) 136532,
doi: 10.1016/j.scitotenv.2020.136532.
- N. Sharma, P. Kaur, D. Jain, M.S. Bhullar, In-vitro evaluation of
rice straw biochars’ effect on bispyribac-sodium dissipation and
microbial activity in soil, Ecotoxicol. Environ. Saf., 191 (2020)
110204, doi:10.1016/j.ecoenv.2020.110204.
- B. Chen, D. Zhou, L. Zhu, Transitional adsorption and partition
of nonpolar and polar aromatic contaminants by biochars of
pine needles with different pyrolytic temperatures, Environ.
Sci. Technol., 42 (2008) 5137–5143.
- L. Zhao, X. Cao, Q. Wang, F. Yang, S. Xu, Mineral constituents
profile of biochar derived from diversified waste biomasses
implications for agricultural applications, J. Environ. Qual.,
42 (2013) 545–552.
- L. Zhao, X. Cao, O. Mašek, A. Zimmerman, Heterogeneity
of biochar properties as a function of feedstock sources and
production temperatures, J. Hazard. Mater., 256 (2013) 1–9.
- D. Mohan, H. Kumar, A. Sarswat, M. Alexandre-Franco,
C.U. Pittman Jr., Cadmium and lead remediation using
magnetic oak wood and oak bark fast pyrolysis biochars,
Chem. Eng. J., 236 (2014) 513–528.
- D. Mohan, S. Rajput, V.K. Singh, P.H. Steele, C.U. Pittman
Jr., Modeling and evaluation of chromium remediation from
water using low cost bio-char, a green adsorbent, J. Hazard.
Mater., 188 (2011) 319–333.
- H.N. Tran, S.J. You, H.P. Chao, Effect of pyrolysis temperatures
and times on the adsorption of cadmium onto orange peel
derived biochar, Waste Manage. Res., 34 (2016) 129–138.
- S. Sohi, E. Lopez-Capel, E. Krull, R. Bol, Biochar, climate
change and soil: a review to guide future research, CSIRO
Land Water Sci. Rep., 5 (2009) 17–31.
- X. Wang, Z. Guo, Z. Hu, J. Zhang, Recent advances in biochar
application for water and wastewater treatment: a review,
Peer J., 8 (2020) e9164, doi: 10.7717/peerj.9164.
- H. Li, X. Dong, E.B. Da Silva, L.M. De Oliveira, Y. Chen,
L.Q. Ma, Mechanisms of metal sorption by biochars: biochar
characteristics and modifications, Chemosphere, 178 (2017)
466–478.
- H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative
distribution of Pb2+ sorption mechanisms by sludge-derived
biochar, Water Res., 46 (2012) 854–862.
- F. Zhang, X Wang, D. Yin, B. Peng, C. Tan, Y. Liu, X. Tan,
S. Wu, Efficiency and mechanisms of Cd removal from
aqueous solution by biochar derived from water hyacinth
(Eichornia crassipes), J. Environ. Manage., 153 (2015) 68–73.
- T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Preparation
of activated carbon from olive stone waste optimization
study on the removal of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+
from aqueous solution using response surface methodology,
J. Dispersion Sci. Technol., 35 (2014) 913–925.
- H. Jin, M.U. Hanif, S. Capareda, Z. Chang, H. Huang,
Y. Ai, Copper(II) removal potential from aqueous solution by
pyrolysis biochar derived from anaerobically digested algaedairy-
manure and effect of KOH activation, J. Environ. Chem.
Eng., 4 (2016) 365–372.
- S. Wang, B. Gao, A.R. Zimmerman, Y. Li, L. Ma, W.G. Harris,
K.W. Migliaccio, Removal of arsenic by magnetic biochar
prepared from pinewood and natural hematite, Bioresour.
Technol., 175 (2015) 391–395.
- Y. Yao, B. Gao, M. Inyang, A.R. Zimmerman, X. Cao,
P. Pullammanappallil, L. Yang, Removal of phosphate from
aqueous solution by biochar derived from anaerobically digested
sugar beet tailings, J. Hazard. Mater., 190 (2011) 501–507.
- B. Chen, Z. Chen, S. Lv, A novel magnetic biochar efficiently
sorbs organic pollutants and phosphate, Bioresour. Technol.,
102 (2011) 716–723.
- D. Mohan, C.U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents – a critical review,
J. Hazard.
Mater., 142 (2007) 1–53.
- R. Sneddon, H. Garelick, E. Valsami-Jones, An investigation
into arsenic(V) removal from aqueous solutions by
hydroxyapatite and bone char, Miner. Mag., 69 (2005) 769–780.
- S. Jiang, L. Huang, T.A.H. Nguyen, Y.S. Ok, V. Rudolph,
H. Yang, D. Zhang, Copper and zinc adsorption by softwood
and hardwood biochars under elevated sulphate-induced
salinity and acidic pH conditions, Chemosphere, 142 (2016)
64–71.
- J. Jin, M. Kang, K. Sun, Z. Pan, F. Wu, B. Xing, Properties of
biochar-amended soils and their sorption of imidacloprid,
isoproturon, and atrazine, Sci. Total Environ., 550 (2016)
504–513.
- W. Gwenzi, T. Musarurwa, P. Nyamugafata, N. Chaukura,
A. Chaparadza, S. Mbera, Adsorption of Zn2+ and Ni2+ in
a binary aqueous solution by biosorbants derived from
sawdust and water hyacinth (Eichhorniacrassipes), Water Sci.
Technol., 70 (2014) 1419–1427.
- J. Park, Y.S. Ok, S. Kim, J. Cho, J. Heo, R.D. Delaune, D. Seo,
Competitive adsorption of heavy metals onto sesame straw
biochar in aqueous solutions, Chemosphere, 142 (2016) 77–83.
- X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Removal of
Cu, Zn, and Cd from aqueous solutions by the dairy manurederived
biochar, Environ. Sci. Pollut. Res., 20 (2013) 358–368.
- L. Trakal, D. Bingöl, M.Pohořelý, M. Hruška, M. Komárek,
Geochemical and spectroscopic investigations of Cd and Pb
sorption mechanisms on contrasting biochars engineering
implications, Bioresour. Technol., 171 (2014) 442–451.
- W. Gwenzi, N. Chaukura, C. Noubactep, M. Fnd, Biocharbased
water treatment systems as a potential low-cost and
sustainable technology for clean water provision, J. Environ.
Manage., 197 (2017) 732–749.
- Y. Han, A.A. Boateng, P.X. Qi, I.M. Lima, J. Chang, Heavy metal
and phenol adsorptive properties of biochars from pyrolyzed
switchgrass and woody biomass in correlation with surface
properties, J. Environ. Manage., 118 (2013) 196–204.
- Z. Chen, B. Chen, C.T. Chiou, Fast and slow rates of
naphthalene sorption to biochars produced at different
temperatures, Environ. Sci. Technol., 46 (2012) 11104–11111.
- X. Zhu, Y. Liu, C. Zhou, G. Luo, S. Zhang, J. Chen, A novel
porous carbon derived from hydrothermal carbon for efficient
adsorption of tetracycline, Carbon, 77 (2014) 627–636.
- M. Inyang, B. Gao, A. Zimmerman, M. Zhang, H. Chen,
Synthesis, characterization, and dye sorption ability of carbon
nanotube-biochar nanocomposites, Chem. Eng. J., 236 (2014)
39–46.
- K. Sun, M. Kang, Z. Zhang, J. Jin, Z. Wang, Z. Pan, D. Xu,
F. Wu, B. Xing, Impact of deashing treatment on biochar
structural properties and potential sorption mechanisms of
phenanthrene, Environ. Sci. Technol., 47 (2013) 11473–11481.
- M. Ahmad, S.S. Lee, A.U. Rajapaksha, M. Vithanage,
M. Zhang, J.S. Cho, S. Lee, Y.S. Ok, Trichloroethylene adsorption
by pine needle biochars produced at various pyrolysis temperatures,
Bioresour. Technol., 143 (2013) 615–622.
- R. Xu, S. Xiao, J. Yuan, A. Zhao, Adsorption of methyl violet
from aqueous solutions by the biochars derived from crop
residues, Bioresour. Technol., 102 (2011) 10293–10298.
- M. Xie, W. Chen, Z. Xu, S. Zheng, D. Zhu, Adsorption of
sulfonamides to demineralized pine wood biochars prepared
under different thermochemical conditions, Environ. Pollut.,
186 (2014) 187–194.
- F. Younas, A. Mustafa, Z.U.R. Farooqi, X. Wang, S. Younas,
W. Mohy-Ud-Din, M. Ashir Hameed, M. Mohsin Abrar,
A.A. Maitlo, S. Noreen, Current and emerging adsorbent
technologies for wastewater treatment: trends, limitations,
and environmental implications, Water, 13 (2021) 215, doi:
10.3390/w13020215.
- S. Rangabhashiyam, P. Balasubramanian, The potential of
lignocellulosic biomass precursors for biochar production,
performance, mechanism and wastewater application – a
review, Ind. Crops Prod., 128 (2019) 405–423.
- X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang,
Application of biochar for the removal of pollutants from
aqueous solutions, Chemosphere, 125 (2015) 70–85.
- R. Goswami, J. Shim, S. Deka, D. Kumari, R. Kataki, M. Kumar,
Characterization of cadmium removal from aqueous solution
by biochar produced from Ipomoea fistulosa at different
pyrolytic temperatures, Ecol. Eng., 97 (2016) 444–451.
- T. Sizmur, T. Fresno, G. Akgül, H. Frost, E. Moreno-Jiménez,
Biochar modification to enhance sorption of inorganics from
water, Bioresour. Technol., 246 (2017) 34–47.
- S. Guo, J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang, H. Xia,
Effects of CO2 activation on porous structures of coconut
shell-based activated carbons, Appl. Surf. Sci., 255 (2009)
8443–8449.
- T. Shim, J. Yoo, C. Ryu, Y. Park, J. Jung, Effect of steam
activation of biochar produced from a giant Miscanthus on
copper sorption and toxicity, Bioresour. Technol., 197 (2015)
85–90.
- I.M. Lima, W.E. Marshall, Adsorption of selected
environmentally important metals by poultry manure-based
granular activated carbons, J. Chem. Technol. Biotechnol.,
80 (2005) 1054–1061.
- T. Zhang, W. Walawender, L. Fan, M. Fan, D. Daugaard,
R. Brown, Preparation of activated carbon from forest and
agricultural residues through co-activation, Chem. Eng. J.,
105 (2004) 53–59.
- K. Lou, A.U. Rajapaksha, Y.S. Ok, S.X. Chang, Pyrolysis
temperature and steam activation effects on sorption of
phosphate on pine sawdust biochars in aqueous solutions,
Chem. Speciation Bioavailability, 28 (2016) 42–50.
- L. Zhao, W. Zheng, O. Maek, X. Chen, B. Gu, B.K. Sharma,
X. Cao, Roles of phosphoric acid in biochar formation:
synchronously improving carbon retention and sorption
capacity, J. Environ. Qual., 46 (2017) 393–401.
- S. Hamid, Z. Chowdhury, S. Zain, Base catalytic approach
a promising technique for the activation of biochar for
equilibrium sorption studies of copper, Cu(II) ions in single
solute system, Materials, 7 (2014) 2815–2832.
- H. Jin, S. Capareda, Z. Chang, J. Gao, Y. Xu, J. Zhang,
Biochar pyrolytically produced from municipal solid wastes
for aqueous As(V) removal adsorption property and its
improvement with KOH activation, Bioresour. Technol.,
169 (2014) 622–629.
- R. Pietrzak, P. Nowicki, J. Kaźmierczak, I. Kuszyńska,
J. Goscianska, J. Przepiórski, Comparison of the effects
of different chemical activation methods on properties of
carbonaceous adsorbents obtained from cherry stones, Chem.
Eng. Res. Des., 92 (2014) 1187–1191.
- L. Chen, X.L. Chen, C.H. Zhou, H.M. Yang, S.F. Ji, D.S. Tong,
Z.K. Zhong, W.H. Yu, M.Q. Chu, Environmental-friendly
montmorillonite-biochar composites facile production and
tunable adsorption-release of ammonium and phosphate,
J. Cleaner Prod., 156 (2017) 648–659.
- Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou,
A.E. Creamer, Y. Sun, L. Yang, Characterization and
environmental applications of clay-biochar composites,
Chem. Eng. J., 242 (2014) 136–143.
- M. Zhang, B. Gao, Y. Yao, Y. Xue, M. Inyang, Synthesis
of porous MgO-biochar nanocomposites for removal of
phosphate and nitrate from aqueous solutions, Chem. Eng. J.,
210 (2012) 26–32.
- M. Zhang, B. Gao, Y. Yao, M. Inyang, Phosphate removal
ability of biochar/MgAlLdh ultra-fine composites prepared by
liquid-phase deposition, Chemosphere, 92 (2013) 1042–1047.
- S. Jellali, E. Diamantopoulos, K. Haddad, M. Anane,
W. Durner, A. Mlayah, Lead removal from aqueous solutions
by raw sawdust and magnesium pretreated biochar
experimental investigations and numerical modelling,
J. Environ. Manage., 180 (2016) 439–449.
- J. Ren, N. Li, L. Li, J. An, L. Zhao, N. Ren, Granulation and
ferric oxides loading enable biochar derived from cotton
stalk to remove phosphate from water, Bioresour. Technol.,
178 (2015) 119–125.
- A.U. Rajapaksha, S.S. Chen, D.C.W. Tsang, M. Zhang,
M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok,
Engineered/designer biochar for contaminant removal/immobilization from soil and water potential and implication
of biochar modification, Chemosphere, 148 (2016) 276–291.
- K. Qian, A. Kumar, K. Patil, D. Bellmer, D. Wang, W. Yuan,
R. Huhnke, Effects of biomass feedstocks and gasification
conditions on the physiochemical properties of char, Energies,
6 (2013) 3972–3986.
- L. Hadjittofi, M. Prodromou, I. Pashalidis, Activated biochar
derived from cactus fibres—preparation, characterization
and application on Cu(II) removal from aqueous solutions,
Bioresour. Technol., 159 (2014) 460–464.
- Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, W. Qiu Synthesis and
characterization of a novel MnOx-loaded biochar and its
adsorption properties for Cu2+ in aqueous solution, Chem.
Eng. J., 242 (2014) 36–42.
- M.D. Huff, J.W. Lee, Biochar-surface oxygenation with
hydrogen peroxide, J. Environ. Manage., 165 (2016) 17–21.
- J.T. Petrović, M.D. Stojanović, J.V. Milojković, M.S. Petrović,
T.D. Šoštarić, M.D. Laušević, M.L. Mihajlović, Alkali modified
hydrochar of grape pomace as a perspective adsorbent of Pb2+
from aqueous solution, J. Environ. Manage., 182 (2016) 292–300.
- J. Tang, H. Lv, Y. Gong, Y. Huang, Preparation and characterization
of a novel graphene/biochar composite for aqueous
phenanthrene and mercury removal, Bioresour. Technol.,
196 (2015) 355–363.
- M. Shang, Y. Liu, S. Liu, G. Zeng, X. Tan, L. Jiang, X. Huang,
Y. Ding, Y. Guo, S. Wang, A novel graphene oxide coated
biochar composite synthesis, characterization and application
for Cr(VI) removal, RSC Adv., 6 (2016) 85202–85212.
- Y. Yi, Z. Huang, B. Lu, J. Xian, E.P. Tsang, W. Cheng, J. Fang,
Z. Fang, Magnetic biochar for environmental remediation: a
review, Bioresour. Technol., 298 (2020) 122468, doi: 10.1016/j.
biortech.2019.122468.
- Y. Chen, S. Ho, D. Wang, Z. Wei, J. Chang, N. Ren, Lead
removal by a magnetic biochar derived from persulfate-ZVI
treated sludge together with one-pot pyrolysis, Bioresour.
Technol., 247 (2018) 463–470.
- Y. Chen, S. Bai, R. Li, G. Su, X. Duan, S. Wang, N. Ren, S. Ho,
Magnetic biochar catalysts from anaerobic digested sludge:
production, application and environment impact, Environ.
Int., 126 (2019) 302–308.
- S. Zhang, Y. Ji, J. Dang, J. Zhao, S. Chen, Magnetic apple
pomace biochar: simple preparation, characterization, and
application for enriching Ag(I) in effluents, Sci. Total Environ.,
668 (2019) 115–123.
- L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms:
from the natural environment to infectious diseases, Nat. Rev.
Microbiol., 2 (2004) 95–108.
- R. Singh, D. Paul, R.K. Jain, Biofilms: implications in bioremediation,
Trends Microbiol., 14 (2006) 389–397.
- S. Dalahmeh, L. Ahrens, M. Gros, K. Wiberg, M. Pell, Potential
of biochar filters for onsite sewage treatment: adsorption
and biological degradation of pharmaceuticals in laboratory
filters with active, inactive and no biofilm, Sci. Total Environ.,
612 (2018) 192–201.
- J. Wang, S. Wang, Preparation, modification and environmental
application of biochar: a review, J. Cleaner Prod., 227 (2019)
1002–1022.
- X. Duan, H. Sun, S. Wang, Metal-free carbocatalysis in
advanced oxidation reactions, Acc. Chem. Res., 51 (2018)
678–687.
- M. Asadullah, I. Jahan, M.B. Ahmed, P. Adawiyah, N.H. Malek,
M.S. Rahman, Preparation of microporous activated carbon
and its modification for arsenic removal from water, J. Ind.
Eng. Chem., 20 (2014) 887–896.
- Y. Xiong, Q. Tong, W. Shan, Z. Xing, Y. Wang, S. Wen, Z. Lou,
Arsenic transformation and adsorption by iron hydroxide/
manganese dioxide doped straw activated carbon, Appl. Surf.
Sci., 416 (2017) 618–627.
- S. Mondal, K. Aikat, G. Halder, Biosorptive uptake of
arsenic (V) by steam activated carbon from mung bean husk:
equilibrium, kinetics, thermodynamics and modeling, Appl.
Water Sci., 7 (2017) 4479–4495.
- I. Lima, K. Ro, G. Reddy, D. Boykin, K. Klasson, I.M. Lima,
K.S. Ro, G.B. Reddy, D.L. Boykin, K.T. Klasson, Efficacy
of chicken litter and wood biochars and their activated
counterparts in heavy metal clean up from wastewater,
Agriculture, 5 (2015) 806–825.
- W.G. Li, X.J. Gong, K. Wang, X.R. Zhang, W.B. Fan, Adsorption
characteristics of arsenic from micro-polluted water by
an innovative coal-based mesoporous activated carbon,
Bioresour. Technol., 165 (2014) 166–173.
- Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao,
Sorption of heavy metals on chitosan-modified biochars and
its biological effects, Chem. Eng. J., 231 (2013) 512–518.
- Y. Shi, R. Shan, L. Lu, H. Yuan, H. Jiang, Y. Zhang, Y. Chen,
High-efficiency removal of Cr(VI) by modified biochar
derived from glue residue, J. Cleaner Prod., 254 (2020) 119935,
doi: 10.1016/j.jclepro.2019.119935.
- L.G. Boutsika, H.K. Karapanagioti, I.D. Manariotis, Aqueous
mercury sorption by biochar from malt spent rootlets, Water
Air Soil Pollut., 225 (2014) 1805.
- I.D. Manariotis, K.N. Fotopoulou, H.K. Karapanagioti,
Preparation and characterization of biochar sorbents
produced from malt spent rootlets, Ind. Eng. Chem. Res.,
54 (2015) 9577–9584.
- H. Liu, S. Liang, J. Gao, H.H. Ngo, W. Guo, Z. Guo, Y. Li,
Development of biochars from pyrolysis of lotus stalks for
Ni(II) sorption using zinc borate as flame retardant, J. Anal.
Appl. Pyrolysis, 107 (2014) 336–341.
- K.K. Rubeena, P. Hari Prasad Reddy, A.R. Laiju, P.V. Nidheesh,
Iron impregnated biochars as heterogeneous Fenton catalyst
for the degradation of acid red 1 dye, J. Environ. Manage.,
226 (2018) 320–328.
- G.S. dos Reis, M.A. Adebayo, C.H. Sampaio, E.C. Lima,
P.S. Thue, I.A.S. de Brum, S.L.P. Dias, F.A. Pavan, Removal of
phenolic compounds from aqueous solutions using sludgebased
activated carbons prepared by conventional heating
and microwave-assisted pyrolysis, Water Air Soil Pollut.,
228 (2016) 33, doi:10.1007/s11270-016-3202-7.
- R. Pradhananga, L. Adhikari, R. Shrestha, M. Adhikari,
R. Rajbhandari, K. Ariga, L. Shrestha, Wool carpet dye
adsorption on nanoporous carbon materials derived from
agro-product, C-J. Carbon Res., 3 (2017) 3020012, doi: 10.3390/
c3020012.
- M. Li, H. Huang, S. Yu, N. Tian, F. Du, X. Dong, Y. Zhang,
Simultaneously promoting charge separation and
photoabsorption of BiOX (X=Cl, Br) for efficient visible-light
photocatalysis and photosensitization by compositing lowcost
biochar, Appl. Surf. Sci., 386 (2016) 285–295.
- J.H. Park, J.J. Wang, R. Xiao, N. Tafti, R.D. De Laune,
D.C. Seo, Degradation of Orange G by Fenton-like reaction
with Fe-impregnated biochar catalyst, Bioresour. Technol.,
249 (2018) 368–376.
- H. Fu, S. Ma, P. Zhao, S. Xu, S. Zhan, Activation of
peroxymonosulfate by graphitized hierarchical porous
biochar and MnFe2O4 magnetic nanoarchitecture for
organic pollutants degradation: structure dependence and
mechanism, Chem. Eng. J., 360 (2019) 157–170.
- M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto,
G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells
as an alternative adsorbent for removing Reactive Red 141
from aqueous solutions, J. Cleaner Prod., 171 (2018) 57–65.
- J. Qin, Q. Chen, M. Sun, P. Sun, G. Shen, Pyrolysis temperatureinduced
changes in the catalytic characteristics of rice huskderived
biochar during 1,3-dichloropropene degradation,
Chem. Eng. J., 330 (2017) 804–812.
- K.T. Klasson, C.A. Ledbetter, M. Uchimiya, I.M. Lima,
Activated biochar removes 100% dibromochloropropane
from field well water, Environ. Chem. Lett., 11 (2013) 271–275.
- G. Fang, C. Zhu, D.D. Dionysiou, J. Gao, D. Zhou, Mechanism
of hydroxyl radical generation from biochar suspensions:
implications to diethyl phthalate degradation, Bioresour.
Technol., 176 (2015) 210–217.
- B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by
biochars of orange peels with different pyrolytic temperatures,
Chemosphere, 76 (2009) 127–133.
- S. Valili, G. Siavalas, H.K. Karapanagioti, I.D. Manariotis,
K. Christanis, Phenanthrene removal from aqueous solutions
using well-characterized, raw, chemically treated, and charred
malt spent rootlets, a food industry by-product, J. Environ.
Manage., 128 (2013) 252–258.
- G. Fang, C. Liu, J. Gao, D.D. Dionysiou, D. Zhou, Manipulation
of persistent free radicals in biochar to activate persulfate for
contaminant degradation, Environ. Sci. Technol., 49 (2015)
5645–5653.
- P. Zhang, H. Sun, L. Min, C. Ren, Biochars change the sorption
and degradation of thiacloprid in soil insights into chemical
and biological mechanisms, Environ. Pollut., 236 (2018)
158–167.
- J. Yan, L. Han, W. Gao, S. Xue, M. Chen, Biochar supported
nanoscale zerovalent iron composite used as persulfate
activator for removing trichloroethylene, Bioresour. Technol.,
175 (2014) 269–274.
- M. Uchimiya, L.H. Wartelle, I.M. Lima, K.T. Klasson, Sorption
of deisopropylatrazine on broiler litter biochars,
J. Agric. Food
Chem., 58 (2010) 12350–12356.
- L. Chen, S. Yang, X. Zuo, Y. Huang, T. Cai, D. Ding, Biochar
modification significantly promotes the activity of Co3O4
towards heterogeneous activation of peroxymonosulfate,
Chem. Eng. J., 354 (2018) 856–865.
- Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei,
L. Luo, M. Lei, L. Tang, Modification of biochar derived from
sawdust and its application in removal of tetracycline and
copper from aqueous solution: adsorption mechanism and
modelling, Bioresour. Technol., 245 (2017) 266–273.
- L. Kemmou, Z. Frontistis, J. Vakros, I.D. Manariotis,
D. Mantzavinos, Degradation of antibiotic sulfamethoxazole
by biochar-activated persulfate: factors affecting the
activation and degradation processes, Catal. Today, 313 (2018)
128–133.
- S.K. Mohanty, K.B. Cantrell, K.L. Nelson, A.B. Boehm, Efficacy
of biochar to remove Escherichia coli from stormwater under
steady and intermittent flow, Water Res., 61 (2014) 288–296.
- K. Kaetzl, M. Lübken, G. Uzun, T. Gehring, E. Nettmann,
K. Stenchly, M. Wichern, On-farm wastewater treatment
using biochar from local agro residues reduces pathogens
from irrigation water for safer food production in developing
countries, Sci. Total Environ., 682 (2019) 601–610.
- R. Fan, C. Chen, J. Lin, J. Tzeng, C. Huang, C. Dong,
C.P. Huang, Adsorption characteristics of ammonium ion
onto hydrous biochars in dilute aqueous solutions, Bioresour.
Technol., 272 (2019) 465–472.
- E. Viglašová, M. Galamboš, Z. Danková, L. Krivosudský,
C.L. Lengauer, R. Hood-Nowotny, G. Soja, A. Rompel,
M. Matík, J. Briančin, Production, characterization and
adsorption studies of bamboo-based biochar/montmorillonite
composite for nitrate removal, Waste Manage, 79 (2018)
385–394.
- Q. Yin, M. Liu, H. Ren, Biochar produced from the co-pyrolysis
of sewage sludge and walnut shell for ammonium and
phosphate adsorption from water, J. Environ. Manage.,
249 (2019) 109410, doi:10.1016/j.jenvman.2019.109410.
- L.F. Perez-Mercado, C. Lalander, A. Joel, J. Ottoson,
S. Dalahmeh, B. Vinnerås, Biochar filters as an on-farm
treatment to reduce pathogens when irrigating with
wastewater-polluted sources, J. Environ. Manage., 248 (2019)
109295, doi: 10.1016/j.jenvman.2019.109295.
- E. Tchomgui-Kamga, V. Alonzo, C.P. Nanseu-Njiki,
N. Audebrand, E. Ngameni, A. Darchen, Preparation and
characterization of charcoals that contain dispersed aluminum
oxide as adsorbents for removal of fluoride from drinking
water, Carbon, 48 (2010) 333–343.
- Z. Ajmal, A. Muhmood, R. Dong, S. Wu, Probing the efficiency
of magnetically modified biomass-derived biochar for
effective phosphate removal, J. Environ. Manage., 253 (2020)
109730, doi:10.1016/j.jenvman.2019.109730.
- Y. Dai, N. Zhang, C. Xing, Q. Cui, Q. Sun, The adsorption,
regeneration and engineering applications of biochar for
removal of organic pollutants: a review, Chemosphere,
223 (2019) 12–27.
- Y.P. Qiu, Z.Z. Zheng, Z.L. Zhou, G.D. Sheng, Effectiveness
and mechanisms of dye adsorption on a straw-based biochar,
Bioresour. Technol., 100 (2009) 5348–5351.
- S.S. Fan, Y. Wang, Z. Wang, J. Tang, X.D. Li, Removal
of methylene blue from aqueous solution by sewage
sludge-derived biochar: adsorption kinetics, equilibrium,
thermodynamics and mechanism, J. Environ. Chem. Eng.,
5 (2017) 601–611.
- Q. Yin, B. Zhang, R. Wang, Z. Zhao, Biochar as an adsorbent
for inorganic nitrogen and phosphorus removal from water:
a review, Environ. Sci. Pollut. Res., 24 (2017) 26297–26309.
- X. Hu, X. Zhang, H.H. Ngo, W. Guo, H. Wen, C. Li, Y. Zhang,
C. Ma, Comparison study on the ammonium adsorption
of the biochars derived from different kinds of fruit peel,
Sci. Total Environ., 707 (2020) 135544, doi: 10.1016/j.
scitotenv.2019.135544.
- X. Wu, Y. Zhang, X. Dou, M. Yang, Fluoride removal
performance of a novel Fe-AlCe trimetal oxide adsorbent,
Chemosphere, 69 (2007) 1758–1764.
- J. Fan, X. Chen, Z.B. Xu, X.Y. Xu, L. Zhao, H. Qiu, X.D. Cao,
One pot synthesis of nZVI-embedded biochar for remediation
of two mining arsenic-contaminated soils: arsenic immobilization
associated with iron transformation, J. Hazard.
Mater., 398 (2020) 122901, doi: 10.1016/j.jhazmat.2020.122901.
- H. Zhang, R. Xiao, R.H. Li, A. Ali, A. Chen, Z.Q. Zhang, Enhanced
aqueous Cr(VI) removal using chitosan-modified magnetic
biochars derived from bamboo residues, Chemosphere,
261 (2020) 127694, doi:10.1016/j.chemosphere.2020.127694.
- R. Gao, H. Hu, Q. Fu, Z. Li, Z. Xing, U. Ali, J. Zhu,
Y. Liu, Remediation of Pb, Cd, and Cu contaminated soil
by co-pyrolysis biochar derived from rape straw and
orthophosphate: speciation transformation, risk evaluation
and mechanism inquiry, Sci. Total Environ., 730 (2020) 139119,
doi: 10.1016/j.scitotenv.2020.139119.
- G.C. Tan, N. Xu, Y.R. Xu, H.Y. Wang, W.L. Sun, Sorption of
mercury(II) and atrazine by biochar, modified biochars and
biochar based activated carbon in aqueous solution, Bioresour.
Technol., 211 (2016) 727–735.
- N. Li, M.L. Yin, D.C.W. Tsang, S.T. Yang, J. Liu, X. Li, G. Song,
J. Wang, Mechanisms of U(VI) removal by biochar derived
from Ficus microcarpa aerial root: a comparison between raw
and modified biochar, Sci. Total Environ., 697 (2019) 134115,
doi: 10.1016/j.scitotenv.2019.134115.
- M.C. Wang, G.D. Sheng, Y.P. Qiu, A novel manganese-oxide/
biochar composite for efficient removal of lead(II) from
aqueous solutions, Int. J. Environ. Sci. Technol., 12 (2015)
1719–1726.
- S.S. Fan, Y. Wang, Y. Li, Z. Wang, Z.X. Xie, J. Tang, Removal of
tetracycline from aqueous solution by biochar derived from
rice straw, Environ. Sci. Pollut. Res., 25 (2018) 29529–29540.
- J.L. Liu, B.Q. Zhou, H. Zhang, J. Ma, B. Mu, W.B. Zhang, A novel
biochar modified by Chitosan-Fe/S for tetracycline adsorption
and studies on site energy distribution, Bioresour. Technol.,
294 (2019) 122152, doi:10.1016/j.biortech.2019.122152.
- S.M. Taha, M.E. Amer, A.E. Elmarsafy, M.Y. Elkady, Adsorption
of 15 different pesticides on untreated and phosphoric acid
treated biochar and charcoal from water, J. Environ. Chem.
Eng., 2 (2014) 2013–2025.
- M. Vithanage, S.S. Mayakaduwa, I. Herath, Y.S. Ok,
D. Mohan, Kinetics, thermodynamics and mechanistic studies
of carbofuran removal using biochars from tea waste and
rice husks, Chemosphere, 150 (2015) 781–789.
- J. Cui, F. Zhang, H. Li, J. Cui, Y. Ren, X. Yu, Recent progress
in biochar-based photocatalysts for wastewater treatment:
synthesis, mechanisms, and applications, Appl. Sci., 10 (2020)
1019, doi: 10.3390/app10031019.
- P. Lisowski, J.C. Colmenares, O. Mašek, W. Lisowski,
D. Lisovytskiy, A. Kamińska, D. Łomot, Dual functionality
of TiO2/biochar hybrid materials: photocatalytic phenol
degradation in the liquid phase and selective oxidation of
methanol in the gas phase, ACS Sustainable Chem. Eng.,
5 (2017) 6274–6287.
- J. Matos, Eco-friendly heterogeneous photocatalysis on
biochar-based materials under solar irradiation, Top. Catal.,
59 (2016) 394–402.
- T.G. Ambaye, M. Vaccari, E.D. van Hullebusch, A. Amrane,
S. Rtimi, Mechanisms and adsorption capacities of biochar
for the removal of organic and inorganic pollutants from
industrial wastewater, Int. J. Environ. Sci. Technol., 18 (2021)
3273–3294.
- H. Zhang, Z. Wang, R. Li, J. Guo, Y. Li, J. Zhu, X. Xie, TiO2
supported on reed straw biochar as an adsorptive and
photocatalytic composite for the efficient degradation of
sulfamethoxazole in aqueous matrices, Chemosphere,
185 (2017) 351–360.
- L. Lu, R. Shan, Y. Shi, S. Wang, H. Yuan, A novel TiO2/biochar
composite catalysts for photocatalytic degradation of methyl
orange, Chemosphere, 222 (2019) 391–398.
- N. Zhu, C. Li, L. Bu, C. Tang, S. Wang, P. Duan, L. Yao, J. Tang,
D.D. Dionysiou, Y. Wu, Bismuth impregnated biochar for
efficient estrone degradation: the synergistic effect between
biochar and Bi/Bi2O3 for a high photocatalytic performance,
J. Hazard. Mater., 384 (2020) 121258, doi: 10.1016/j.
jhazmat.2019.121258.
- C. Li, G. Zhao, T. Yan, T. Zhang, X. Liu, X. Long, H. Duan,
F. Jiao, Enhanced visible-light-induced photocatalytic
performance of Bi2O3/ZnAl-LDH-C for dyes removal in water,
Mater. Lett., 244 (2019) 215–218.
- A. Kumar, G. Sharma, M. Naushad, A. Kumar, S. Kalia,
C. Guo, G.T. Mola, Facile hetero-assembly of superparamagnetic
Fe3O4/BiVO4 stacked on biochar for solar photodegradation
of methyl paraben and pesticide removal from
soil, J. Photochem. Photobiol., A, 337 (2017) 118–131.
- N. Gao, Z. Lu, X. Zhao, Z. Zhu, Y. Wang, D. Wang, Z. Hua,
C. Li, P. Huo, M. Song, Enhanced photocatalytic activity of
a double conductive C/Fe3O4/Bi2O3 composite photocatalyst
based on biomass, Chem. Eng. J., 304 (2016) 351–361.
- S. Li, Z. Wang, X. Xie, G. Liang, X. Cai, X. Zhang, Z. Wang,
Fabrication of vessel–like biochar–based heterojunction
photocatalyst Bi2S3/BiOBr/BC for diclofenac removal under
visible LED light irradiation: mechanistic investigation and
intermediates analysis, J. Hazard. Mater., 391 (2019) 121407,
doi:10.1016/j.jhazmat.2019.121407.
- M. Li, H. Huang, S. Yu, N. Tian, F. Dong, X. Du, Y. Zhang,
Simultaneously promoting charge separation and
photoabsorption of BiOX (X=Cl, Br) for efficient visible-light
photocatalysis and photosensitization by compositing lowcost
biochar, Appl. Surf. Sci., 386 (2016) 285–295.
- S. Li, Z. Wang, X. Zhao, X. Yang, G. Liang, X. Xie, Insight into
enhanced carbamazepine photodegradation over biocharbased
magnetic photocatalyst Fe3O4/BiOBr/BC under visible
LED light irradiation, Chem. Eng. J., 360 (2019) 600–611.
- J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based
photocatalysts, Appl. Surf. Sci., 391 (2017) 72–123.
- A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler,
A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nano-hybrids of
magnetic biochar supported g-C3N4/FeVO4 for solar powered
degradation of noxious pollutants - Synergism of adsorption,
photocatalysis, and photo-ozonation, J. Cleaner Prod.,
165 (2017) 431–451.
- Y. Zheng, Y. Yang, Y. Zhang, W. Zou, Y. Luo, L. Dong, B. Gao,
Facile one-step synthesis of graphitic carbon nitride-modified
biochar for the removal of reactive red 120 through adsorption
and photocatalytic degradation, Biochar, 1 (2019) 89–96.
- A. Kumar, A. Kumar, G. Sharma, A.A.H. Al-Muhtaseb,
M. Naushad, A.A. Ghfar, C. Guo, F.J. Stadler, Biochartemplated
g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for
visible and solar assisted photodegradation of paraquat,
nitrophenol reduction and CO2 conversion, Chem. Eng. J.,
339 (2018) 393–410.
- K. Li, Z. Huang, S. Zhu, S. Luo, L. Yan, Y. Dai, Y. Guo,
Y. Yang, Removal of Cr(VI) from water by a biochar-coupled
g-C3N4 nanosheets composite and performance of a recycled
photocatalyst in single and combined pollution systems,
Appl. Catal., B, 243 (2019) 386–396.
- L. Zhang, Z. Jin, S. Huang, X. Huang, B. Xu, L. Hu, H. Cui,
S. Ruan, Y.J. Zeng, Bio-inspired carbon doped graphitic
carbon nitride with booming photocatalytic hydrogen
evolution, Appl. Catal., B, 246 (2019) 61–71.
- A.S.K. Kumar, J.G. You, W.B. Tseng, G.D. Dwivedi, N. Rajesh,
S.J. Jiang, W.L. Tseng, Magnetically separable nanospherical
g-C3N4@Fe3O4 as a recyclable material for chromium
adsorption and visible-light-driven catalytic reduction of
aromatic nitro compounds, ACS Sustainable Chem. Eng.,
7 (2019) 6662–6671.
- J.G. Kim, H.B. Kim, G.S. Yoon, S.H. Kim, S.J. Min,
D.C.W. Tsang, K. Baek, Simultaneous oxidation and
adsorption of arsenic by one-step fabrication of alum sludge
and graphitic carbon nitride (g-C3N4), J. Hazard. Mater.,
383 (2020) 121138, doi: 10.1016/j.jhazmat.2019.121138.
- X. Chen, L. Fu, Y. Yu, C. Wu, M. Li, X. Jin, J. Yang, P. Wang,
Y. Chen, Recent development in sludge biochar-based
catalysts for advanced oxidation processes of wastewater,
Catalysts, 11 (2021) 1275, doi:10.3390/catal11111275.
- J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn, M. Titirici,
Biomass-derived carbon quantum dot sensitizers for solidstate
nanostructured solar cells, Angew. Chem. Int. Ed.,
54 (2015) 4463–4468.
- M. Hassan, V.G. Gomes, A. Dehghani, S.M. Ardekani,
Engineering carbon quantum dots for photomediated
theranostics, Nano Res., 11 (2018) 1–41.
- J. Zhang, Y. Ma, Y. Du, H. Jiang, D. Zhou, S. Dong, Carbon
nanodots/WO3 nanorods Z-scheme composites: remarkably
enhanced photocatalytic performance under broad spectrum,
Appl. Catal., B, 209 (2017) 253–264.
- X. Yao, C. Ma, H. Huang, Z. Zhu, H. Dong, C. Li, W. Zhang,
Y. Yan, Y. Liu, Solvothermal-assisted synthesis of biomass
carbon quantum dots/bismuth oxyiodide microflower for
enhanced photocatalytic activity, Nano, 13 (2018) 1850031,
doi: 10.1142/S1793292018500315.
- T. Wang, X. Liu, Q. Men, C. Ma, Y. Liu, W. Ma, Z. Liu,
M. Wei, C. Li, Y. Yan, Surface plasmon resonance effect of Ag
nanoparticles for improving the photocatalytic performance
of biochar quantum dot/Bi4Ti3O12 nanosheets, Chin. J. Catal.,
40 (2019) 886–894.
- D.C. Botia, M.S. Rodriguez, V.M. Sarria, Evaluation of UV/TiO2 and UV/ZnO photocatalytic systems coupled to a
biological process for the treatment of bleaching pulp mill
effluent, Chemosphere, 89 (2012) 732–736.
- V. Ramya, D. Murugan, C. Lajapathirai, A. Sivasamy, Activated
carbon (prepared from secondary sludge biomass) supported
semiconductor zinc oxide nanocomposite photocatalyst for
reduction of Cr(VI) under visible light irradiation, J. Environ.
Chem. Eng., 6 (2018) 7327–7337.
- K. Guan, P.J. Zhou, J.Y. Zhang, L.L. Zhu, Synthesis and
characterization of ZnO@RSDBC composites and their photooxidative
degradation of Acid Orange 7 in water, J. Mol. Struct.,
1203 (2020) 127425, doi:10.1016/j.molstruc.2019.127425.
- S. Barathi, N. Vasudevan, Bioremediation of crude oil
contaminated soil by bioaugmentation of Pseudomonas
fuorescens NS1, J. Environ. Sci. Health. Part A Toxic/Hazard.
Subst. Environ. Eng., 38 (2003) 1857–1866.
- A. Partovinia, B. Rasekh, Review of the immobilized microbial
cell systems for bioremediation of petroleum hydrocarbons
polluted environments, Crit. Rev. Env. Sci. Technol., 48 (2018)
1–38.
- N.J. Pino, L.M. Muñera, G.A. Peñuela, Bioaugmentation with
immobilized microorganisms to enhance phytoremediation
of PCB-contaminated soil, J. Soil Contam., 25 (2016) 419–430.
- B.L. Chen, M.X. Yuan, L.B. Qian, Enhanced bioremediation of
PAH-contaminated soil by immobilized bacteria with plant
residue and biochar as carriers, J. Soils Sediments, 12 (2012)
1350–1359.
- X.P. Zhang, Y.S. Li, H. Li, Enhanced bio-immobilization of Pb
contaminated soil by immobilized bacteria with biochar as
carrier, Pol. J. Environ. Stud., 26 (2017) 413–418.
- L. Liang, F. Xi, W. Tan, X. Meng, B. Hu, X. Wang, Review of
organic and inorganic pollutants removal by biochar and
biochar-based composites,. Biochar, 3 (2021) 255–281.
- S.K. Mohanty, R. Valenca, A.W. Berger, I.K.M. Yu, X.N. Xiong,
T.M. Saunders, D.C.W. Tsang, Plenty of room for carbon on
the ground: potential applications of biochar for stormwater
treatment, Sci. Total Environ., 625 (2018) 1644–1658.
- P. Baltrėnas, E. Baltrėnaitė, J. Kleiza, J. Švedienė, A biocharbased
medium in the biofiltration system: Removal efficiency,
microorganism propagation, and the medium penetration
modeling, J. Air Waste Manage. Assoc., 66 (2016) 673–686.
- A. Deepa, P. Prakash, B.K. Mishra, Performance of biochar
based filtration bed for the removal of Cr(VI) from pre-treated
synthetic tannery wastewater, Environ. Technol., 42 (2019)
257–269.
- A. Prado, R. Berenguer, A. Esteve-Núñez, Electroactive
biochar outperforms highly conductive carbon materials for
degrading pollutants by enhancing microbial extracellular
electron transfer, Carbon, 146 (2019) 597–609.
- J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak, C. Sumby, Mixed
matrix membranes, Angew. Chem., 56 (2017) 9292–9310.
- T. Xie, K.R. Reddy, C.W. Wang, E. Yargicoglu, K. Spokas,
Characteristics and applications of biochar for environmental
remediation: a review, Crit. Rev. Env. Sci. Technol., 45 (2015)
939–969.
- J. He, Y. Song, J.P. Chen, Development of a novel biochar/
PSF mixed matrix membrane and study of key parameters
in treatment of copper and lead contaminated water,
Chemosphere, 186 (2017) 1033–1045.
- A. Ghaffar, X.Y. Zhu, B. Chen, Biochar composite membrane
for high performance pollutant management: Fabrication,
structural characteristics and synergistic mechanisms,
Environ. Pollut., 233 (2018) 1013–1023.
- H.W. Liang, Q.F. Guan, L.F. Chen, Z. Zhu, S.H. Yu, Macroscopic
scale template synthesis of robust carbonaceous nanofiber
hydrogels and aerogels and their applications, Angew. Chem.
Int. Ed., 124 (2012) 5191–5195.
- Z.Q. Wang, P.X. Jin, M. Wang, C.H. Wu, C. Dong, A. Wu,
Biomass-derived porous carbonaceous aerogel as sorbent for
oil-spill remediation, ACS Appl. Mater. Interfaces, 8 (2016)
32862–32868.
- H. Liu, Y.F. Wei, J.M. Luo, T. Li, D. Wang, S.L. Luo,
J.C. Crittenden, 3D hierarchical porous-structured biochar
aerogel for rapid and efficient phenicol antibiotics removal
from water, Chem. Eng. J., 368 (2019) 639–648.
- M.Y. Zhang, L.H. Song, H.F. Jiang, S. Li, Y.F. Shao, J.Q. Yang,
J.F. Li, Biomass based hydrogel as an adsorbent for the fast
removal of heavy metal ions from aqueous solutions, J. Mater.
Chem. A, 5 (2017) 3434–3446.
- X.C. Nguyen, Q.V. Ly, T.T.H. Nguyen, H.T.T. Ngo, Y. Hu,
Z. Zhang, Potential application of machine learning for
exploring adsorption mechanisms of pharmaceuticals onto
biochars, Chemosphere, 287 (2022) 132203, doi:10.1016/j.
chemosphere.2021.132203.