References

  1. V. Kumar, R.D. Parihar, A. Sharma, P. Bakshi, G.P.S. Sidhu, A.S. Bali, L. Karaouzas, R. Bhardwaj, A.K. Thukral, Y. Gyasi-Agyei, J. Rodrigo-Comino, Global evaluation of heavy metal content in surface water bodies:
    a meta-analysis using heavy metal pollution indices and multivariate statistical analyses, Chemosphere, 236 (2019) 124364, doi: 10.1016/j. chemosphere.2019.124364.
  2. Y. Guo, C. Teng, J. Liu, X. Liu, X. Bian, Q. Zhang, Spectrophotometric determination of trace heavy metal ions in water with the assistance of electrospun nanofiber membrane extraction and chemometrics calculation,
    J. Appl. Spectrosc., 87 (2020) 174–179.
  3. I. Menezes, P.D. Nascimento, M.H. Gonzalez, A. Oliveira, Simple and robust GFAAS methods for determination of As, Cd, and Pb in hemp products using different sample preparation strategies, Food Anal. Methods, 14 (2021) 1043–1053.
  4. L.J. Huang, W. Huang, R.J. Shen, Q. Shuai, Chitosan/thiol functionalized metal–organic framework composite for the simultaneous determination of lead and cadmium ions in food samples, Food Chem., 330 (2020) 127212, doi: 10.1016/j. foodchem.2020.127212.
  5. L.L. Zhao, S.X. Zhong, K.M. Fang, Z.S. Qian, J.R. Chen, Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry, J. Hazard. Mater., 239 (2012) 206–212.
  6. E. Haque, P.S. Thorne, A.A. Nghiem, C.S. Yip, B.C. Bostick, Lead (Pb) concentrations and speciation in residential soils from an urban community impacted by multiple legacy sources, J. Hazard. Mater., 416 (2021) 125886, doi: 10.1016/j. jhazmat.2021.125886.
  7. M. Malakootian, H. Abolghasemi, H. Mahmoudi-Moghaddam, A novel electrochemical sensor based on the modified carbon paste using Eu3+ – doped NiO for simultaneous determination of Pb(II) and Cd(II),
    J. Electroanal. Chem., 876 (2020) 114474, doi: 10.1016/j.jelechem.2020.114474.
  8. F.A. Gutierrez, J.M. Gonzalez-Dominguez, A. Ansón-Casaos, J. Hernández-Ferrer, M.D. Rubianes, M.T. Martínez, G. Rivas, Single-walled carbon nanotubes covalently functionalized with cysteine: a new alternative for the highly sensitive and selective Cd(II) quantification, Sens. Actuators, B, 249 (2017) 506–514.
  9. C. Fan, L. Chen, R. Jiang, J. Ye, H. Li, Y. Shi, Y. Luo, G. Wang, J. Hou, X. Guo, ZnFe2O4 nanoparticles for electrochemical determination of trace Hg(II), Pb(II), Cu(II), and glucose, ACS Appl. Nano Mater., 4 (2021) 4026–4036.
  10. M. Li, H.L. Gou, I. Al-Ogaidi, N.Q. Wu, Nanostructured sensors for detection of heavy metals: a review, ACS Sustainable Chem. Eng., 1 (2013) 713–723.
  11. N. Baig, M. Sajid, T.A. Saleh, Recent trends in nanomaterialmodified electrodes for electroanalytical applications, TrAC, Trends Anal. Chem., 111 (2019) 47–61.
  12. B.Y.G. Pan, L. Bai, C.M. Hu, X.P. Wang, W.S. Li, F.G. Zhao, Graphene-indanthrone donor-π-acceptor heterojunctions for high-performance flexible supercapacitors, Adv. Energy Mater., 10 (2020) 202000181, doi: 10.1002/aenm.202000181.
  13. L. Wang, J. Li, Y.F. Pan, L.F. Min, Y.C. Zhang, X.Y. Hu, Z.J. Yang, Platinum nanoparticle-assembled nanoflake-like tin disulfide for enzyme-based amperometric sensing of glucose, Microchem. Acta, 184 (2017) 2357–2363.
  14. H. Karimi-Maleh, K. Cellat, K. Arikan, A. Savk, F. Karimi, F. Sen, Palladium–nickel nanoparticles decorated on functionalized- MWCNT for high precision non-enzymatic glucose sensing, Mater. Chem. Phys., 250 (2020) 123042, doi: 10.1016/j. matchemphys.2020.123042.
  15. Y.M. Leng, K. Jiang, W.T. Zhang, Y.H. Wang, Synthesis of gold nanoparticles from Au(I) ions that shuttle to solidify: application on the sensor array design, Langmuir, 33 (2017) 6398–6403.
  16. J.N. Baby, B. Sriram, S.F. Wang, M. George, Effect of various deep eutectic solvents on the sustainable synthesis of MgFe2O4 nanoparticles for simultaneous electrochemical determination of nitrofurantoin and
    4-nitrophenol, ACS Sustainable Chem. Eng., 8 (2020) 1479–1486.
  17. M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.R. Awual, M.M. Rahman, Detection of uric acid based on doped ZnO/ Ag2O/Co3O4 nanoparticle loaded glassy carbon electrode, New J. Chem., 43 (2019) 8651–8659.
  18. Q.G. He, J. Liu, X.P. Liu, G.L. Li, D.C. Chen, P.H. Deng, J. Liang, A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites, Electrochim. Acta, 296 (2019) 683–692.
  19. H. Bagheri, A. Hajian, M. Rezaei, A. Shirzadmehr, Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate, J. Hazard. Mater., 324 (2017) 762–772.
  20. R.T. Kachoosangi, M.M. Musameh, I. Abu-Yousef, J.M. Yousef, S.M. Kanan, L. Xiao, S.G. Davies, A. Russell, R.G. Compton, Carbon nanotube-ionic liquid composite sensors and biosensors, Anal. Chem., 81 (2009) 435–442.
  21. J.C. Hu, Z.G. Zhang, Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids, Nanomaterials, 10 (2020) 10102020, doi: 10.3390/nano10102020.
  22. H.L. Yang, W.T. Xu, X.Y. Liang, Y.Y. Yang, Y. Zhou, Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review, Microchim. Acta, 187 (2020),
    doi:10.1007/s00604-020-4172-4.
  23. L. Jin-Hyon, P. Ungyu, Dispersion stability of single-walled carbon nanotubes using Nafion in biosolvent,
    J. Phys. Chem. C, 111 (2007) 2477–2483.
  24. S. Hou, S. Su, M.L. Kasner, P. Shah, K. Patel, C.J. Madarang, Formation of highly stable dispersions of silane-functionalized reduced graphene oxide, Chem. Phys. Lett., 501 (2010) 68–74.
  25. K. Hasebe, J. Osteryoung, Differential pulse polarographic determination of some carcinogenic nitrosamines, Anal. Chem., 47 (1975) 2412–2418.
  26. N. Altunay, A. Elik, D. Bingol, Simple and green heat-induced deep eutectic solvent microextraction for determination of lead and cadmium in vegetable samples by flame atomic absorption spectrometry:
    a multivariate study, Biol. Trace Elem. Res., 198 (2020) 324–331.
  27. S. Bakirdere, T. Yaroglu, N. Tirik, M. Demiroz, A.K. Fidan, O. Maruldali, A. Karaca, Determination of As, Cd, and Pb in tap water and bottled water samples by using optimized GFAAS system with Pd-Mg and Ni as matrix modifiers, J. Spectrosc., 2013 (2013) 824817, doi: 10.1155/2013/824817.
  28. A. Wong, P.A. Ferreira, A.M. Santos, F.H. Cincotto, R.A.B. Silva, M. Sotomayor, A new electrochemical sensor based on ecofriendly chemistry for the simultaneous determination of toxic trace elements, Microchem. J., 158 (2020) 105292, doi: 10.1016/j. microc.2020.105292.
  29. Y. Yao, H. Wu, J.F. Ping, Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor, Food Chem., 274 (2019) 8–15.
  30. H. Dai, N. Wang, D. Wang, H. Ma, M. Lin, An electrochemical sensor based on phytic acid functionalized polypyrrole/ graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II), Chem. Eng. J., 299 (2016) 150–155.
  31. M.T.T. Nguyen, H.L. Nguyen, D.T. Nguyen, Poly(1,5-Diaminonaphthalene)-modified screen-printed device for electrochemical lead ion sensing, Adv. Polym. Technol., 2021 (2021) 6637316, doi: 10.1155/2021/6637316.
  32. Z. Lu, W. Zhao, L. Wu, J. He, W. Dai, C. Zhou, H. Du, J. Ye, Tunable electrochemical of electrosynthesized
    layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead, Sens. Actuators, B, 326 (2021) 128957, doi: 10.1016/j.snb.2020.128957.
  33. Y.-L. Xie, Sensitive determination of lead(II), copper(II), and mercury(II) based on B/P-doped ordered mesoporous carbons, Int. J. Electrochem. Sci., (2020) 12339–12352.
  34. R. Zhao, X.X. Wu, Y.X. Gao, Y.N. Liu, J.J. Gao, Y.M. Chen, Z. Zheng, W. Gan, Q.H. Yuan, A unique bimetallic MOF derived carbon-MWCNTs hybrid structure for selective electrochemical determination of lead ion in aqueous solution, Microchem. J., 158 (2020) 105271, doi: 10.1016/j.microc.2020.105271.
  35. H. Xiao, W. Wang, S. Pi, Y. Cheng, Q. Xie, Pyridine-2-sulfonic (or carboxylic) acid modified glassy carbon electrode for anodic stripping voltammetry analysis of Cd2+ and Pb2, Anal. Chim. Acta, 1135 (2020) 20–28.