References
- G. Zhou, J. Luo, C. Liu, L. Chu, J. Crittenden, Efficient heavy
metal removal from industrial melting effluent using fixedbed
process based on porous hydrogel adsorbents, Water Res.,
131 (2018) 246–254.
- A. Celik, A. Demirbaş, Removal of heavy metal ions from
aqueous solutions via adsorption onto modified lignin from
pulping wastes, Energy Sources, 27 (2005) 1167–1177.
- I. Kula, M. Uğurlu, H. Karaoğlu, A. Celik, Adsorption of Cd(II) ions
from aqueous solutions using activated carbon prepared from olive
stone by ZnCl2 activation, Bioresour. Technol., 99 (2008) 492–501.
- S.L. Bazana, Q.L. Shimabuku-Biadola, F.S. Arakawa,
R.G. Gomes, E.S. Cossich, R. Bergamasco, Modified activated
carbon with silver–copper mixed oxides nanoparticles for
removal of heavy metals from water, Int. J. Environ. Sci.
Technol., 16 (2019) 6727–6734.
- Y. Song, L. Wang, B. Lv, G. Chang, W. Jiao, Y. Liu, Removal of
trace Cr(VI) from aqueous solution by porous activated carbon
balls supported by nanoscale zero-valent iron composites,
Environ. Sci. Pollut. Res., 27 (2020) 7015–7024.
- T. Altun, H. Ecevit, Cr(VI) removal using Fe2O3-chitosan-cherry
kernel shell pyrolytic charcoal composite beads, Environ. Eng.
Res., 25 (2020) 426–438.
- R. Arora, Adsorption of heavy metals–a review, Mater. Today:
Proc., 18 (2019) 4745–4750.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad,
Efficient techniques for the removal of toxic heavy metals from
aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017)
2782–2799.
- C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Threedimensional
electrochemical process for wastewater treatment:
a general review, Chem. Eng. J., 228 (2013) 455–467.
- V.K. Gupta, I. Ali, Removal of lead and chromium from
wastewater using bagasse fly ash – a sugar industry waste,
J. Colloid Interface Sci., 271 (2004) 321–328.
- Renu, M. Agarwal, K. Singh, Heavy metal removal from
wastewater using various adsorbents: a review, J. Water Reuse
Desalin., 7 (2017) 387–419.
- G. Issabayeva, M.K. Aroua, N.M.N. Sulaiman, Removal of
lead from aqueous solutions on palm shell activated carbon,
Bioresour. Technol., 97 (2006) 2350–2355.
- E.A. Deliyanni, G.Z. Kyzas, K.S. Triantafyllidis, K.A. Matis,
Activated carbons for the removal of heavy metal ions: a
systematic review of recent literature focused on lead and
arsenic ions, Open Chem., 13 (2015) 699–708.
- S. Lo, S. Wang, M. Tsai, L. Lin, Adsorption capacity and removal
efficiency of heavy metal ions by Moso and Ma bamboo
activated carbons, Chem. Eng. Res. Des., 90 (2012) 1397–1406.
- W. Zheng, S. Chen, H. Liu, Y. Ma, W. Xu, Study of the
modification mechanism of heavy metal ions adsorbed by
biomass-activated carbon doped with a solid nitrogen source,
RSC Adv., 9 (2019) 37440–37449.
- E. Koohzad, D. Jafari, H. Esmaeili, Adsorption of lead and
arsenic ions from aqueous solution by activated carbon prepared
from Tamarix leaves, ChemistrySelect, 4 (2019) 12356–12367.
- M. Wang, G. Bera, K. Mitra, T.L. Wade, A.H. Knap, T.D. Phillips,
Tight sorption of arsenic, cadmium, mercury, and lead by edible
activated carbon and acid-processed montmorillonite clay,
Environ. Sci. Pollut. Res., 28 (2021) 6758–6770.
- E. Aboli, D. Jafari, H. Esmaeili, Heavy metal ions (lead, cobalt,
and nickel) biosorption from aqueous solution onto activated
carbon prepared from Citrus limetta leaves, Carbon Lett.,
30 (2020) 683–698.
- S.M. Kharrazi, N. Mirghaffari, M.M. Dastgerdi, M. Soleimani,
A novel post-modification of powdered activated carbon
prepared from lignocellulosic waste through thermal tension
treatment to enhance the porosity and heavy metals adsorption,
Powder Technol., 366 (2020) 358–368.
- J. Kyziol-Komosinska, I. Twardowska, A. Kocela, Adsorption
of cadmium(II) ions from industrial wastewater by low moor
peat occurring in the overburden of brown coal deposits, Arch.
Environ. Prot., 34 (2008) 83–94.
- I. Levchuk, J.J.R. Márquez, M. Sillanpää, Removal of natural
organic matter (NOM) from water by ion exchange – a review,
Chemosphere, 192 (2018) 90–104.
- Y. Matsui, D.R.U. Knappe, R. Takagi, Pesticide adsorption by
granular activated carbon adsorbers. 1. Effect of natural organic
matter preloading on removal rates and model simplification,
Environ. Sci. Technol., 36 (2002) 3426–3431.
- W.-W. Tang, G.-M. Zeng, J.-L. Gong, J. Liang, P. Xu, C. Zhang,
B.-B. Huang, Impact of humic/fulvic acid on the removal of
heavy metals from aqueous solutions using nanomaterials:
a review, Sci. Total Environ., 468 (2014) 1014–1027.
- S. Tuomikoski, R. Kupila, H. Romar, D. Bergna, T. Kangas,
H. Runtti, U. Lassi, Zinc adsorption by activated carbon
prepared from lignocellulosic waste biomass, Appl. Sci.,
9 (2019) 4583, doi: 10.3390/app9214583.
- L. Dabek, Sorption of zinc ions from aqueous solutions on
regenerated activated carbons, J. Hazard. Mater., 101 (2003)
191–201.
- E. Da’na, A. Awad, Regeneration of spent activated carbon
obtained from home filtration system and applying it for
heavy metals adsorption, J. Environ. Chem. Eng., 5 (2017)
3091–3099.
- S. Lata, P.K. Singh, S.R. Samadder, Regeneration of adsorbents
and recovery of heavy metals: a review, Int. J. Environ. Sci.
Technol., 12 (2015) 1461–1478.
- A. Larasati, G.D. Fowler, N.J.D. Graham, Insights into chemical
regeneration of activated carbon for water treatment, J. Environ.
Chem. Eng., 9 (2021) 1–11.
- C. Suo, K. Du, R. Yuan, H. Chen, F. Wang, B. Zhou, Adsorption
study of heavy metal ions from aqueous solution by activated
carbon in single and mixed system, Desal. Water Treat.,
183 (2020) 315–324.
- J. Manfrin, A.C. Gonçalves Jr., D. Schwantes, E. Conradi Junior,
J. Zimmermann, G.L. Ziemer, Development of biochar and
activated carbon from cigarettes wastes and their applications
in Pb2+ adsorption, J. Environ. Chem. Eng., 9 (2021) 104980,
doi: 10.1016/j.jece.2020.104980.
- J. Lin, L. Wang, Comparison between linear and non-linear
forms of pseudo-first-order and pseudo-second-order
adsorption kinetic models for the removal of methylene blue
by activated carbon, Front. Environ. Sci. Eng. China, 3 (2009)
320–324.
- R.M. Shrestha, I. Varga, J. Bajtai, M. Varga, Design of surface
functionalization of waste material originated charcoals by an
optimized chemical carbonization for the purpose of heavy
metal removal from industrial waste waters, Microchem. J.,
108 (2013) 224–232.
- D. Obregón-Valencia, M.D.R. Sun-Kou, Comparative cadmium
adsorption study on activated carbon prepared from aguaje
(Mauritia flexuosa) and olive fruit stones (Olea europaea L.),
J. Environ. Chem. Eng., 2 (2014) 2280–2288.
- A.C. Goncalves, D. Schwantes, M.A. Campagnolo,
D.C. Dragunski, C.R.T. Tarley, A.K.D. Silva, Removal of toxic
metals using endocarp of acai berry as biosorbent, Water Sci.
Technol., 77 (2018) 1547–1557.
- S. Banerjee, S. Mukherjee, A. LaminKa-ot, S.R. Joshi, T. Mandal,
G. Halder, Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated
biochar derived from Colocasia esculenta: isotherm, kinetics,
thermodynamics, and cost estimation, J. Adv. Res., 7 (2016)
597–610.
- A.M. Youssef, T. El-Nabarawy, S.E. Samra, Sorption properties
of chemically-activated carbons: 1. Sorption of cadmium(II)
ions, Colloids Surf., A, 235 (2004) 153–163.
- Z. Mahdi, Q.J. Yu, A.E. Hanandeh, Investigation of the kinetics
and mechanisms of nickel and copper ions adsorption from
aqueous solutions by date seed derived biochar, J. Environ.
Chem. Eng., 6 (2018) 1171–1181.
- C. Faur-Brasquet, K. Kadirvelu, P.L. Cloirec, Removal of metal
ions from aqueous solution by adsorption onto activated carbon
cloths: adsorption competition with organic matter, Carbon,
40 (2002) 2387–2392.
- A. Kuroki, M. Hiroto, Y. Urushihara, T. Horikawa, K.I. Sotowa,
J.R. Alcántara Avila, Adsorption mechanism of metal ions on
activated carbon, Adsorption, 25 (2019) 1251–1258.
- K. Kadirvelu, C. Faur-Brasquet, P.L. Cloirec, Removal of Cu(II),
Pb(II), and Ni(II) by adsorption onto activated carbon cloths,
Langmuir, 16 (2000) 8404–8409.
- S.J. Allen, P.A. Brown, Isotherm analyses for single component
and multi-component metal sorption onto lignite, J. Chem.
Technol. Biotechnol. Biotechnol., 62 (2010) 17–24.
- M.E. Zayat, E. Smith, Modeling of heavy metals removal from
aqueous solution using activated carbon produced from cotton
stalk, Water Sci. Technol., 67 (2013) 1612–1619.
- D. Schwantes, A.C. Gonalves, A. Schiller, J. Manfrin,
A.G. Rosenberger, Eco-friendly, renewable Crambe abyssinica
Hochst-based adsorbents remove high quantities of Zn2+ in
water, J. Environ. Health Sci., 18 (2020) 809–823.
- A.C. Goncalves, D. Schwantes, A.L. Braccini, F. Albornoz,
E. Conradi, J. Zimmermann, Canola meal derived activated
biochar treated with NaOH and CO2 as an effective tool for Cd
removal, J. Chem. Technol. Biotechnol., 97 (2022) 87–100.
- D. Schwantes, A.C. Goncalves, M.A. Campagnolo, C.R.T. Tarley,
D.C. Dragunski, A. de Varennes, A.K.D. Silva,
E. Conradi,
Chemical modifications on pinus bark for adsorption of toxic
metals, J. Environ. Chem. Eng., 6 (2018) 1271–1278.
- E. Conradi, A.C. Goncalves, D. Schwantes, J. Manfrin, A. Schiller,
J. Zimmerman, G.J. Klassen, G.L. Ziemer, Development of
renewable adsorbent from cigarettes for lead removal from
water, J. Environ. Chem. Eng., 7 (2019) 103200, doi: 10.1016/j.
jece.2019.103200.
- A.C. Goncalves, A.L. Braccini, D. Schwantes, M.A. Campagnolo,
A.D. Schiller, J. Manfrin, E. Conradi,
J. Zimmermann,
Adsorbents developed from residual biomass of canola
grains for the removal of lead from water, Desal. Water Treat.,
197 (2020) 261–279.
- X. Liu, X. Xu, X. Dong, J. Park, Competitive adsorption of heavy
metal ions from aqueous solutions onto activated carbon and
agricultural waste materials, Pol. J. Environ. Stud., 29 (2020)
749–761.
- M. Touihri, S. Gouveia, F. Guesmi, C. Hannachi, B. Hamrouni,
C. Cameselle, Low-cost biosorbents from pines wastes for
heavy metals removal from wastewater: adsorption/desorption
studies, Desal. Water Treat., 225 (2021) 430–442.
- M. Bilal, J. Ali, M.Y. Khan, R. Uddin, F. Kanwl, Synthesis and
characterization of activated carbon from Capparis decidua for
removal of Pb(II) from model aqueous solution: kinetic and
thermodynamics approach, Desal. Water Treat., 221 (2021)
185–196.
- A. Pholosi, E.B. Naidoo, A.E. Ofomaja, Intraparticle diffusion
of Cr(VI) through biomass and magnetite coated biomass: a
comparative kinetic and diffusion study, S. Afr. J. Chem. Eng.,
32 (2020) 39–55.
- H. Liu, S. Feng, N. Zhang, X. Du, Y. Liu, Removal of Cu(II) ions
from aqueous solution by activated carbon impregnated with
humic acid, Front. Environ. Sci. Eng., 8 (2014) 329–336.
- D.J. de Ridder, A.R.D. Verliefde, S.G.J. Heijman, J. Verberk,
L.C. Rietveld, L.T.J. van der Aa, G.L. Amy, J.C. van Dijk,
Influence of natural organic matter on equilibrium adsorption
of neutral and charged pharmaceuticals onto activated carbon,
Water Sci. Technol., 63 (2011) 416–423.
- A.L. Paredes-Doig, A. Pinedo-Flores, J. Aylas-Orejon,
D. Obregon-Valencia, M.R.S. Kou, The interaction of metallic
ions onto activated carbon surface using computational
chemistry software, Adsorpt. Sci. Technol., 38 (2020) 191–204.
- D.P. Sounthararajah, P. Loganathan, J. Kandasamy,
S. Vigneswaran, Effects of humic acid and suspended solids
on the removal of heavy metals from water by adsorption onto
granular activated carbon, Int. J. Environ. Res. Public Health,
12 (2015) 10475–10489.
- L. Dong, W. Liu, R. Jiang, Z. Wang, Study on the adsorption
mechanism of activated carbon removing low concentrations of
heavy metals, Desal. Water Treat., 57 (2016) 7812–7822.
- S. Alvarez-Torrellas, A. Rodriguez, G. Ovejero, J.M. Gomez,
J. Garcia, Removal of caffeine from pharmaceutical wastewater
by adsorption: influence of NOM, textural and chemical
properties of the adsorbent, Environ. Technol., 37 (2016)
1618–1630.
- S.M. Kharrazi, M. Soleimani, M. Jokar, T. Richards, A. Pettersson,
N. Mirghaffari, Pretreatment of lignocellulosic waste as a
precursor for synthesis of high porous activated carbon and
its application for Pb(II) and Cr(VI) adsorption from aqueous
solutions, Int. J. Biol. Macromol., 180 (2021) 299–310.
- O. Üner, Ü. Geçgel, T. Avcu, Comparisons of activated carbons
produced from sycamore balls, ripe black locust seed pods, and
Nerium oleander fruits and also their H2 storage studies, Carbon
Lett., 31 (2021) 75–92.
- S.I. Eze, H.O. Abugu, L.C. Ekowo, Thermal and chemical
pretreatmeent of Cassia sieberiana seed as biosorbent for Pb2+
removal from aqueous solution, Desal. Water Treat., 226 (2021)
223–241.
- R. Shahrokhi-Shahraki, C. Benally, M.G. El-Din, J. Park, High
efficiency removal of heavy metals using tire-derived activated
carbon vs. commercial activated carbon: insights into the
adsorption mechanisms, Chemosphere, 264 (2021) 128455,
doi: 10.1016/j.chemosphere.2020.128455.
- M.M. Rao, A. Ramesh, G.P.C. Rao, K. Seshaiah, Removal of
copper and cadmium from the aqueous solutions by activated
carbon derived from Ceiba pentandra hulls, J. Hazard. Mater.,
129 (2006) 123–129.
- M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir,
A. Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents
for copper removal from industrial wastewater—a review,
J. Hazard. Mater., 263 (2013) 322–333.
- A. Larasati, G.D. Fowler, N.J.D. Graham, Insights into chemical
regeneration of activated carbon for water treatment, J. Environ.
Chem. Eng., 9 (2021) 105555, doi: 10.1016/j.jece.2021.105555.
- L. Zhou, Q. Yu, Y. Cui, F. Xie, W. Li, Y. Li, M. Chen, Adsorption
properties of activated carbon from reed with a high adsorption
capacity, Ecol. Eng., 102 (2017) 443–450.