References
- T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M.N. Iqbal,
Environmentally-related contaminants of high concern:
potential sources and analytical modalities for detection,
quantification, and treatment, Environ. Int., 122 (2019) 52–66.
- R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated
soils: a review of sources, chemistry, risks and best available
strategies for remediation, Int. Scholarly Res. Notices, 2011
(2011) 402647, doi:10.5402/2011/402647.
- P.K. Rai, S.S. Lee, M. Zhang, Y.F. Tsang, K.-H. Kim, Heavy metals
in food crops: Health risks, fate, mechanisms, and management,
Environ. Int., 125 (2019) 365–385.
- A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal
of heavy metals from industrial wastewaters: a review,
ChemBioEng Rev., 4 (2017) 37–59.
- P. Rajasulochana, V. Preethy, Comparison on efficiency of
various techniques in treatment of waste and sewage water – a
comprehensive review, Resour. Technol., 2 (2016) 175–184.
- M. Agarwal, K. Singh, Heavy metal removal from wastewater
using various adsorbents: a review, J. Water Reuse Desal.,
7 (2017) 387–419.
- S.A. El-Safty, A. Shahat, M.R. Awual, Efficient adsorbents of
nanoporous aluminosilicate monoliths for organic dyes from
aqueous solution, J. Colloid Interface Sci., 359 (2011) 9–18.
- S. Afroze, T.K. Sen, A review on heavy metal ions and dye
adsorption from water by agricultural solid waste adsorbents,
Water Air Soil Pollut., 229 (2018) 1–50.
- H. Khayyam, R.N. Jazar, S. Nunna, G. Golkarnarenji, K. Badii,
S.M. Fakhrhoseini, S. Kumar, M. Naebe, PAN precursor
fabrication, applications and thermal stabilization process
in carbon fiber production: experimental and mathematical
modelling, Prog. Mater. Sci., 107 (2020) 100575,
doi: 10.1016/j.pmatsci.2019.100575.
- A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec,
K. Pokomeda, Application of response surface methodology
and artificial neural network methods in modelling and
optimization of biosorption process, Bioresour. Technol.,
160 (2014) 150–160.
- M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental
design for pollutants removal in water treatment with the aid of
artificial intelligence, Chemosphere, 200 (2018) 330–343.
- P.R. Souza, G.L. Dotto, N.P.G. Salau, Artificial neural network
(ANN) and adaptive neuro-fuzzy interference system (ANFIS)
modelling for nickel adsorption onto agro-wastes and
commercial activated carbon,
J. Environ. Chem. Eng., 6 (2018)
7152–7160.
- M. Dolatabadi, M. Mehrabpour, M. Esfandyari, H. Alidadi,
M. Davoudi, Modeling of simultaneous adsorption of dye and
metal ion by sawdust from aqueous solution using of ANN and
ANFIS, Chemom. Intell. Lab. Syst., 181 (2018) 72–78.
- M. Czikkely, E. Neubauer, I. Fekete, P. Ymeri, C. Fogarassy,
Review of heavy metal adsorption processes by several organic
matters from wastewaters, Water, 10 (2018) 1377, doi: 10.3390/w10101377.
- M. Buaisha, Ş. Balku, Ş.Ö. Yaman, ANN-assisted forecasting of
adsorption efficiency to remove heavy metals, Turk. J. Chem.,
43 (2019) 1407–1424.
- M. Niknam Shahrak, M. Esfandyari, M. Karimi, Efficient
prediction of water vapor adsorption capacity in porous metal–
organic framework materials: ANN and ANFIS modeling,
J. Iran. Chem. Soc., 16 (2019), doi:10.1007/s13738-018-1476-y.
- S.M. Aminossadati, A. Kargar, B. Ghasemi, Adaptive networkbased
fuzzy inference system analysis of mixed convection
in a two-sided lid-driven cavity filled with a nanofluid, Int. J.
Therm. Sci., 52 (2012) 102–111.
- M. Esfandyari, M. Amiri, M. Koolivand-Salooki, Neural
network prediction of the fischer-tropsch synthesis of natural
gas with Co(III)/Al2O3 catalyst, Chem. Eng. Res. Bull., 17 (2015)
25–33.
- M. Koolivand Salooki, M. Shokouhi, H. Farahani, M. Keshavarz,
M. Esfandyari, J. Sadeghzadeh Ahari, Experimental and
modelling investigation of H2S solubility in N-methylimidazole
and gamma-butyrolactone,
J. Chem. Thermodyn., 135 (2019),
doi: 10.1016/j.jct.2019.03.031.
- B. Rahmanian, M. Pakizeh, S.A.A. Mansoori, M. Esfandyari,
D. Jafari, H. Maddah, A. Maskooki, Prediction of MEUF process
performance using artificial neural networks and ANFIS
approaches, J. Taiwan Inst. Chem. Eng., 43 (2012) 558–565.
- J.-S.R. Jang, Self-learning fuzzy controllers based on temporal
backpropagation, IEEE Trans. Neural Networks, 3 (1992)
714–723.
- A. Meharrar, M. Tioursi, M. Hatti, A. Boudghene Stambouli,
A variable speed wind generator maximum power tracking
based on adaptative neuro-fuzzy inference system, Expert Syst.
Appl., 38 (2011) 7659–7664.
- M. Mehrabi, S.M. Pesteei, Modeling of heat transfer and fluid
flow characteristics of helicoidal double-pipe heat exchangers
using adaptive neuro-fuzzy inference system (ANFIS), Int.
Commun. Heat Mass Transfer, 38 (2011) 525–532.
- M. Koolivand-Salooki, A. Hafizi, M. Esfandyari, S. Hatami,
M. Shajari, Superiority of neuro fuzzy simulation versus
common methods for detection of abnormal pressure zones in a
southern Iranian oil field, Chemom. Intell. Lab. Syst., 203 (2020)
104039, doi: 10.1016/j.chemolab.2020.104039.
- A.A. Behroozpour, D. Jafari, M. Esfandyari, S.A. Jafari,
Prediction of the continuous cadmium removal efficiency from
aqueous solution by the packed-bed column using GMDH and
ANFIS models, Desal. Water Treat., 234 (2021) 91–101.
- R. Nekooghadirli, M. Taghizadeh, F. Mahmoudi Alami,
Adsorption of Pb(II) and Ni(II) from aqueous solution by
a high-capacity industrial sewage sludge-based adsorbent,
J. Dispersion Sci. Technol., 37 (2016) 786–798.
- S. Babel, D. del Mundo Dacera, Heavy metal removal from
contaminated sludge for land application: a review, Waste
Manage., 26 (2006) 988–1004.
- S. Deshwal, A. Kumar, D. Chhabra, Exercising hybrid statistical
tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM
process parameters for tensile strength improvement, CIRP J.
Manuf. Sci. Technol., 31 (2020) 189–199.
- M. Koolivand-Salooki, M. Esfandyari, E. Rabbani, M. Koulivand,
A. Azarmehr, Application of genetic programing technique
for predicting uniaxial compressive strength using reservoir
formation properties, J. Pet. Sci. Eng., 159 (2017), doi: 10.1016/j.
petrol.2017.09.032.
- R.E. Treybal, Mass Transfer Operations, New York, 1980.
- S.Z. Mohammadi, M.A. Karimi, D. Afzali, F. Mansouri, Removal
of Pb(II) from aqueous solutions using activated carbon from
sea-buckthorn stones by chemical activation, Desalination,
262 (2010) 86–93.
- H. Kalavathy, B. Karthik, L.R. Miranda, Removal and recovery
of Ni and Zn from aqueous solution using activated carbon
from Hevea brasiliensis: batch and column studies, Colloids
Surf., B, 78 (2010) 291–302.
- Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li, Y. Wang,
Preparation of high surface area-activated carbon from lignin
of papermaking black liquor by KOH activation for Ni(II)
adsorption, Chem. Eng. J., 217 (2013) 345–353.
- L. Giraldo-Gutiérrez, J.C. Moreno-Piraján, Pb(II) and Cr(VI)
adsorption from aqueous solution on activated carbons
obtained from sugar cane husk and sawdust, J. Anal. Appl.
Pyrolysis, 81 (2008) 278–284.
- M. Karatas, Removal of Pb(II) from water by natural zeolitic
tuff: kinetics and thermodynamics, J. Hazard. Mater., 199 (2012)
383–389.
- H. Çelebi, G. Gök, O. Gök, Adsorption capability of brewed
tea waste in waters containing toxic lead (II), cadmium(II),
nickel(II), and zinc(II) heavy metal ions, Sci. Rep., 10 (2020)
1–12.
- P. Sun, W. Zhang, B. Zou, X. Wang, L. Zhou, Z. Ye, Q. Zhao,
Efficient adsorption of Cu(II), Pb(II) and Ni(II) from waste
water by PANI@APTS-magnetic attapulgite composites, Appl.
Clay Sci., 209 (2021) 106151, doi: 10.1016/j.clay.2021.106151.