References

  1. T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M.N. Iqbal, Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment, Environ. Int., 122 (2019) 52–66.
  2. R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation, Int. Scholarly Res. Notices, 2011 (2011) 402647, doi:10.5402/2011/402647.
  3. P.K. Rai, S.S. Lee, M. Zhang, Y.F. Tsang, K.-H. Kim, Heavy metals in food crops: Health risks, fate, mechanisms, and management, Environ. Int., 125 (2019) 365–385.
  4. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters: a review, ChemBioEng Rev., 4 (2017) 37–59.
  5. P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review, Resour. Technol., 2 (2016) 175–184.
  6. M. Agarwal, K. Singh, Heavy metal removal from wastewater using various adsorbents: a review, J. Water Reuse Desal., 7 (2017) 387–419.
  7. S.A. El-Safty, A. Shahat, M.R. Awual, Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution, J. Colloid Interface Sci., 359 (2011) 9–18.
  8. S. Afroze, T.K. Sen, A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents, Water Air Soil Pollut., 229 (2018) 1–50.
  9. H. Khayyam, R.N. Jazar, S. Nunna, G. Golkarnarenji, K. Badii, S.M. Fakhrhoseini, S. Kumar, M. Naebe, PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling, Prog. Mater. Sci., 107 (2020) 100575,
    doi: 10.1016/j.pmatsci.2019.100575.
  10. A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process, Bioresour. Technol., 160 (2014) 150–160.
  11. M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence, Chemosphere, 200 (2018) 330–343.
  12. P.R. Souza, G.L. Dotto, N.P.G. Salau, Artificial neural network (ANN) and adaptive neuro-fuzzy interference system (ANFIS) modelling for nickel adsorption onto agro-wastes and commercial activated carbon,
    J. Environ. Chem. Eng., 6 (2018) 7152–7160.
  13. M. Dolatabadi, M. Mehrabpour, M. Esfandyari, H. Alidadi, M. Davoudi, Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS, Chemom. Intell. Lab. Syst., 181 (2018) 72–78.
  14. M. Czikkely, E. Neubauer, I. Fekete, P. Ymeri, C. Fogarassy, Review of heavy metal adsorption processes by several organic matters from wastewaters, Water, 10 (2018) 1377, doi: 10.3390/w10101377.
  15. M. Buaisha, Ş. Balku, Ş.Ö. Yaman, ANN-assisted forecasting of adsorption efficiency to remove heavy metals, Turk. J. Chem., 43 (2019) 1407–1424.
  16. M. Niknam Shahrak, M. Esfandyari, M. Karimi, Efficient prediction of water vapor adsorption capacity in porous metal– organic framework materials: ANN and ANFIS modeling, J. Iran. Chem. Soc., 16 (2019), doi:10.1007/s13738-018-1476-y.
  17. S.M. Aminossadati, A. Kargar, B. Ghasemi, Adaptive networkbased fuzzy inference system analysis of mixed convection in a two-sided lid-driven cavity filled with a nanofluid, Int. J. Therm. Sci., 52 (2012) 102–111.
  18. M. Esfandyari, M. Amiri, M. Koolivand-Salooki, Neural network prediction of the fischer-tropsch synthesis of natural gas with Co(III)/Al2O3 catalyst, Chem. Eng. Res. Bull., 17 (2015) 25–33.
  19. M. Koolivand Salooki, M. Shokouhi, H. Farahani, M. Keshavarz, M. Esfandyari, J. Sadeghzadeh Ahari, Experimental and modelling investigation of H2S solubility in N-methylimidazole and gamma-butyrolactone,
    J. Chem. Thermodyn., 135 (2019), doi: 10.1016/j.jct.2019.03.031.
  20. B. Rahmanian, M. Pakizeh, S.A.A. Mansoori, M. Esfandyari, D. Jafari, H. Maddah, A. Maskooki, Prediction of MEUF process performance using artificial neural networks and ANFIS approaches, J. Taiwan Inst. Chem. Eng., 43 (2012) 558–565.
  21. J.-S.R. Jang, Self-learning fuzzy controllers based on temporal backpropagation, IEEE Trans. Neural Networks, 3 (1992) 714–723.
  22. A. Meharrar, M. Tioursi, M. Hatti, A. Boudghene Stambouli, A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system, Expert Syst. Appl., 38 (2011) 7659–7664.
  23. M. Mehrabi, S.M. Pesteei, Modeling of heat transfer and fluid flow characteristics of helicoidal double-pipe heat exchangers using adaptive neuro-fuzzy inference system (ANFIS), Int. Commun. Heat Mass Transfer, 38 (2011) 525–532.
  24. M. Koolivand-Salooki, A. Hafizi, M. Esfandyari, S. Hatami, M. Shajari, Superiority of neuro fuzzy simulation versus common methods for detection of abnormal pressure zones in a southern Iranian oil field, Chemom. Intell. Lab. Syst., 203 (2020) 104039, doi: 10.1016/j.chemolab.2020.104039.
  25. A.A. Behroozpour, D. Jafari, M. Esfandyari, S.A. Jafari, Prediction of the continuous cadmium removal efficiency from aqueous solution by the packed-bed column using GMDH and ANFIS models, Desal. Water Treat., 234 (2021) 91–101.
  26. R. Nekooghadirli, M. Taghizadeh, F. Mahmoudi Alami, Adsorption of Pb(II) and Ni(II) from aqueous solution by a high-capacity industrial sewage sludge-based adsorbent, J. Dispersion Sci. Technol., 37 (2016) 786–798.
  27. S. Babel, D. del Mundo Dacera, Heavy metal removal from contaminated sludge for land application: a review, Waste Manage., 26 (2006) 988–1004.
  28. S. Deshwal, A. Kumar, D. Chhabra, Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement, CIRP J. Manuf. Sci. Technol., 31 (2020) 189–199.
  29. M. Koolivand-Salooki, M. Esfandyari, E. Rabbani, M. Koulivand, A. Azarmehr, Application of genetic programing technique for predicting uniaxial compressive strength using reservoir formation properties, J. Pet. Sci. Eng., 159 (2017), doi: 10.1016/j. petrol.2017.09.032.
  30. R.E. Treybal, Mass Transfer Operations, New York, 1980.
  31. S.Z. Mohammadi, M.A. Karimi, D. Afzali, F. Mansouri, Removal of Pb(II) from aqueous solutions using activated carbon from sea-buckthorn stones by chemical activation, Desalination, 262 (2010) 86–93.
  32. H. Kalavathy, B. Karthik, L.R. Miranda, Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies, Colloids Surf., B, 78 (2010) 291–302.
  33. Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li, Y. Wang, Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption, Chem. Eng. J., 217 (2013) 345–353.
  34. L. Giraldo-Gutiérrez, J.C. Moreno-Piraján, Pb(II) and Cr(VI) adsorption from aqueous solution on activated carbons obtained from sugar cane husk and sawdust, J. Anal. Appl. Pyrolysis, 81 (2008) 278–284.
  35. M. Karatas, Removal of Pb(II) from water by natural zeolitic tuff: kinetics and thermodynamics, J. Hazard. Mater., 199 (2012) 383–389.
  36. H. Çelebi, G. Gök, O. Gök, Adsorption capability of brewed tea waste in waters containing toxic lead (II), cadmium(II), nickel(II), and zinc(II) heavy metal ions, Sci. Rep., 10 (2020) 1–12.
  37. P. Sun, W. Zhang, B. Zou, X. Wang, L. Zhou, Z. Ye, Q. Zhao, Efficient adsorption of Cu(II), Pb(II) and Ni(II) from waste water by PANI@APTS-magnetic attapulgite composites, Appl. Clay Sci., 209 (2021) 106151, doi: 10.1016/j.clay.2021.106151.