References

  1. X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng, Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment, J. Environ. Anal. Toxicol., 2 (2012) 1–7, doi: 10.4172/2161-0525.1000154.
  2. A.-F. Ngomsik, A. Bee, J.-M. Siaugue, D. Talbot, V. Cabuil, G. Cote, Co(II) removal by magnetic alginate beads containing Cyanex 272, J. Hazard. Mater., 166 (2009) 1043–1049.
  3. H. Hu, Z. Wang, L. Pan, Synthesis of monodisperse Fe3O4@ silica core–shell microspheres and their application for removal of heavy metal ions from water, J. Alloys Compd., 492 (2010) 656–661.
  4. S. Sharifi, R. Nabizadeh, B. Akbarpour, B. Akbarpour, A. Azari, H.R. Ghaffari, S. Nazmara, B. Mahmoudi, L. Shiri, M. Yousefi, Modeling and optimizing parameters affecting hexavalent chromium adsorption from aqueous solutions using Ti-XAD7 nanocomposite: RSM-CCD approach, kinetic, and isotherm studies, J. Environ. Health Sci. Eng., 17 (2019) 873–888.
  5. C. Femina Carolina, P. Senthil Kumar, A. Saravanan, G. Janet Joshiba, Mu. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.
  6. E.N. Zare, A. Motahari, M. Sillanpää, Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review, Environ. Res., 162 (2018) 173–195.
  7. M. Padervand, M.R. Gholami, Removal of toxic heavy metal ions from waste water by functionalized magnetic core–zeolitic shell nanocomposites as adsorbents, Environ. Sci. Pollut. Res., 20 (2013) 3900–3909.
  8. E.S. Abdel-Halim, S.S. Al-Deyab, Chemically modified cellulosic adsorbent for divalent cations removal from aqueous solutions, Carbohydr. Polym., 87 (2012) 1863–1868.
  9. Z. Li, Y. Wang, N. Wu, Q. Chen, K. Wu, Removal of heavy metal ions from wastewater by a novel HEA/AMPS copolymer hydrogel: preparation, characterization, and mechanism, Environ. Sci. Pollut. Res., 20 (2013) 1511–1525.
  10. Y.A. Zheng, D.J. Huang, A.Q. Wang, Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery, Anal. Chim. Acta, 687 (2012) 193–200.
  11. H.V. Tran, L.D. Tran, T.N. Nguyen, Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Mater. Sci. Eng., C, 30 (2010) 304–310.
  12. W. Zhang, F. Xu, Y. Wang, M. Luo, D. Wang, Facile control of zeolite NaA dispersion into xanthan gum–alginate binary biopolymer network in improving hybrid composites for adsorptive removal of Co2+ and Ni2+, Chem. Eng. J., 255 (2014) 316–326.
  13. G.A. Mahmoud, S.E. Abdel-Aal, N.A. Badway, S.A. Abo Farha, E.A. Alshafei, Radiation synthesis and characterization of starch-based hydrogels for removal of acid dye, Starch/Stärke, 66 (2013) 1–10, doi:10.1002/star.201300117.
  14. A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine, J. Hazard. Mater., 181 (2010) 836–844.
  15. D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review, Bioresour. Technol., 99 (2008) 6017–6027.
  16. M. Ilyas, A. Ahmad, M. Saeed, Removal of Cr(VI) from aqueous solutions using peanut shell as adsorbent,
    J. Chem. Soc. Pak., 35 (2013) 760–768.
  17. R. Li, Y. Zhang, W. Chu, Z. Chen, J. Wang, Adsorptive removal of antibiotics from water using peanut shells from agricultural waste, RSC Adv., 8 (2018) 13546–13555.
  18. S. Boumchita, A. Lahrichi, Y. Benjelloun, S. Lairini, V. Nenov, F. Zerrouq, Application of peanut shell
    as a low-cost adsorbent for the removal of anionic dye from aqueous solutions, J. Mater. Environ. Sci., 8 (2017) 2353–2364.
  19. X.-K.O. Yang, L.-P. Yang, Z.-S. Wen, Adsorption of Pb(II) from solution using peanut shell as biosorbent in the presence of amino acid and sodium chloride, BioResources, 9 (2014) 2446–2458.
  20. M.A. Abdel Khalek, G.A. Mahmoud, N.A. El-Kelesh, Synthesis and characterization of poly-methacrylic acid grafted chitosanbentonite composite and its application for heavy metals recovery, Chem. Mater. Res., 2 (2012) 1–12.
  21. C. Dispenza, N. Grimaldi, M.A. Sabatino, I.L. Soroka, M. Jonsson, Radiation-engineered functional nanoparticles in aqueous systems, J. Nanosci. Nanotechnol., 15 (2015) 3445–3467.
  22. N. Grimaldi, M.A. Sabatino, G. Przybytniak, I. Kaluska, M.L. Bondì, D. Bulone, S. Alessi, G. Spadaro, C. Dispenza, High-energy radiation processing, a smart approach to obtain PVP-graft-AA nanogels, Radiat. Phys. Chem., 94 (2014) 76–79.
  23. C. Dispenza, M.A. Sabatino, N. Grimaldi, M.R. Mangione, M. Walo, E. Murugan, M. Jonsson, On the origin of functionalization in one-pot radiation synthesis of nanogels from aqueous polymer solutions, RSC Adv., 6 (2016) 2582–2591.
  24. J.M. Wasikiewicz, H. Mitomo, N. Nagasawa, T. Yagi, M. Tamada, F. Yoshii, Radiation crosslinking of biodegradable carboxymethylchitin and carboxymethylchitosan, J. Appl. Polym. Sci., 102 (2006) 758–767.
  25. S. Sultana, M. Rabiul Islam, N.C. Dafader, M.E. Haque, N. Nagasawa, M. Tamada, Effect of mono- and divalent salts on the properties of carboxymethyl cellulose hydrogel under irradiation technique, Int. J. Chem. Sci., 10 (2012) 627–634.
  26. M.F. Abou Taleb, G.A. Mahmoud, S.M. Elsigeny, E.-S.A. Hegazy, Adsorption and desorption of phosphate and nitrate ions using quaternary (polypropylene-g-N,N-dimethylamino ethylmethacrylate) graft copolymer, J. Hazard. Mater., 159 (2008) 372–379.
  27. S. Khan, N.M. Ranjha, Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels, Polym. Bull., 71 (2014) 2133–2158.
  28. S.M. Fijul Kabir, P.P. Sikdar, B. Haque, M.A. Rahman Bhuiyan, A. Ali, M.N. Islam, Cellulose-based hydrogel materials: chemistry, properties and their prospective applications, Prog. Biomater, 7 (2018) 153–174.
  29. N. La, J. Dubey, P. Gaur, N. Verma, A. Verma, Chitosan based in situ forming polyelectrolyte complexes:
    a potential sustained drug delivery polymeric carrier for high dose drugs, Mater. Sci. Eng., C, 79 (2017) 491–498.
  30. S. Faria, C.L. Oliveira Petkowicz, S.A.L. Morais, M.G. Hernandez Terrones, M.M. Resende, F.P. França, V.L. Cardoso, Characterization of xanthan gum produced from sugar cane broth, Carbohydr. Polym., 86 (2011) 469–476.
  31. N. Kulkarni, P. Wakte, J. Naik, Development of floating chitosan-xanthan beads for oral controlled release of glipizide, Int. J. Pharm. Investig., 5 (2015) 73–80.
  32. G.A. Mahmoud, A. Sayed, M. Thabit, G. Safwat, Chitosan biopolymer based nanocomposite hydrogels for removal of methylene blue dye, SN Appl. Sci., 2 (2020) 968, doi: 10.1007/s42452-020-2753-9.
  33. A. Hendy, E. Khozamy, G.A. Mahmoud, E. Saad, S. Serror, Implementation of carboxymethyl cellulose/acrylic acid/titanium dioxide nanocomposite hydrogel in remediation of Cd(II), Zn(II) and Pb(II) for water treatment application, Egypt. J. Chem., 62 (2019) 1785–1798.
  34. E.R. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Chem. Phys., 63 (1959) 1381–1388.
  35. G.A. Mahmoud, M.A. Abdel Khalek, E.M. Shoukry, M. Amin, A.H. Abdulghany, Removal of phosphate ions from wastewater by treated hydrogel based on chitosan, Egypt. J. Chem., 62 (2019) 1537–1549.
  36. S. Yang, S. Fu, H. Liu, Y. Zhou, X. Li, Hydrogel beads based on carboxymethyl cellulose for removal heavy metal ions, J. Appl. Polym. Sci., 119 (2011) 1204–1210.
  37. L. Pivarčiová, O. Rosskopfová, M. Galamboš, P. Rajec, Sorption of nickel on chitosan, J. Radioanal. Nucl. Chem., 300 (2014) 361–366.
  38. O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of toxic metal ions with magnetic hydrogels, Water Res., 43 (2009) 4403–4411.
  39. Q. Zhu, Z. Li, Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water, Chem. Eng. J., 281 (2015) 69–80.
  40. D. Bekchanov, H. Kawakita, M. Mukhamediev, S. Khushvaktov, M. Juraev, Sorption of cobalt(II) and chromium(III) ions to nitrogen- and sulfur-containing polyampholyte on the basis of polyvinylchloride, Polym. Adv. Technol., 32 (2021) 2700–2709.
  41. C.P. Liu, Removal of cobalt(II) ions from aqueous solution on zinc(II) ions doping chitosan/hydroxyapatite composite, Adv. Compos. Lett., 22 (2013), doi: 10.1177/096369351302200603.
  42. A.L.P. Xavier, O.F.H. Adarme, L.M. Furtado, G.M.D. Ferreira, L.H.M. Silva, L.F. Gil, L.V.A. Gurgel, Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: optimization of monocomponent fixed-bed column adsorption, J. Colloid Interface Sci., 516 (2018) 431–445.
  43. K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential, Alexandria Eng. J., 54 (2015) 757–767.
  44. G.A. Mahmoud, S.E. Abdel-Aal, N.A. Badway, A.A. Elbayaa, D.F. Ahmed, A novel hydrogel based on agricultural waste for removal of hazardous dyes from aqueous solution and reuse process in a secondary adsorption, Polym. Bull., 74 (2017) 337–358.