References
- X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng,
Nanomaterials as sorbents to remove heavy metal ions in
wastewater treatment, J. Environ. Anal. Toxicol., 2 (2012) 1–7,
doi: 10.4172/2161-0525.1000154.
- A.-F. Ngomsik, A. Bee, J.-M. Siaugue, D. Talbot, V. Cabuil,
G. Cote, Co(II) removal by magnetic alginate beads containing
Cyanex 272, J. Hazard. Mater., 166 (2009) 1043–1049.
- H. Hu, Z. Wang, L. Pan, Synthesis of monodisperse Fe3O4@
silica core–shell microspheres and their application for removal
of heavy metal ions from water, J. Alloys Compd., 492 (2010)
656–661.
- S. Sharifi, R. Nabizadeh, B. Akbarpour, B. Akbarpour, A. Azari,
H.R. Ghaffari, S. Nazmara, B. Mahmoudi, L. Shiri, M. Yousefi,
Modeling and optimizing parameters affecting hexavalent
chromium adsorption from aqueous solutions using Ti-XAD7
nanocomposite: RSM-CCD approach, kinetic, and isotherm
studies, J. Environ. Health Sci. Eng., 17 (2019) 873–888.
- C. Femina Carolina, P. Senthil Kumar, A. Saravanan, G. Janet
Joshiba, Mu. Naushad, Efficient techniques for the removal
of toxic heavy metals from aquatic environment: a review,
J. Environ. Chem. Eng., 5 (2017) 2782–2799.
- E.N. Zare, A. Motahari, M. Sillanpää, Nanoadsorbents based
on conducting polymer nanocomposites with main focus on
polyaniline and its derivatives for removal of heavy metal ions/dyes: a review, Environ. Res., 162 (2018) 173–195.
- M. Padervand, M.R. Gholami, Removal of toxic heavy metal
ions from waste water by functionalized magnetic core–zeolitic
shell nanocomposites as adsorbents, Environ. Sci. Pollut. Res.,
20 (2013) 3900–3909.
- E.S. Abdel-Halim, S.S. Al-Deyab, Chemically modified cellulosic
adsorbent for divalent cations removal from aqueous solutions,
Carbohydr. Polym., 87 (2012) 1863–1868.
- Z. Li, Y. Wang, N. Wu, Q. Chen, K. Wu, Removal of heavy
metal ions from wastewater by a novel HEA/AMPS copolymer
hydrogel: preparation, characterization, and mechanism,
Environ. Sci. Pollut. Res., 20 (2013) 1511–1525.
- Y.A. Zheng, D.J. Huang, A.Q. Wang, Chitosan-g-poly(acrylic
acid) hydrogel with crosslinked polymeric networks for Ni2+
recovery, Anal. Chim. Acta, 687 (2012) 193–200.
- H.V. Tran, L.D. Tran, T.N. Nguyen, Preparation of chitosan/magnetite composite beads and their application for removal
of Pb(II) and Ni(II) from aqueous solution, Mater. Sci. Eng., C,
30 (2010) 304–310.
- W. Zhang, F. Xu, Y. Wang, M. Luo, D. Wang, Facile control
of zeolite NaA dispersion into xanthan gum–alginate binary
biopolymer network in improving hybrid composites for
adsorptive removal of Co2+ and Ni2+, Chem. Eng. J., 255 (2014)
316–326.
- G.A. Mahmoud, S.E. Abdel-Aal, N.A. Badway, S.A. Abo Farha,
E.A. Alshafei, Radiation synthesis and characterization of
starch-based hydrogels for removal of acid dye, Starch/Stärke,
66 (2013) 1–10, doi:10.1002/star.201300117.
- A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous
removal of heavy-metal ions in wastewater samples using
nano-alumina modified with 2,4-dinitrophenylhydrazine,
J. Hazard. Mater., 181 (2010) 836–844.
- D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as
potential adsorbent for sequestering heavy metal ions from
aqueous solutions – a review, Bioresour. Technol., 99 (2008)
6017–6027.
- M. Ilyas, A. Ahmad, M. Saeed, Removal of Cr(VI) from aqueous
solutions using peanut shell as adsorbent,
J. Chem. Soc. Pak.,
35 (2013) 760–768.
- R. Li, Y. Zhang, W. Chu, Z. Chen, J. Wang, Adsorptive removal
of antibiotics from water using peanut shells from agricultural
waste, RSC Adv., 8 (2018) 13546–13555.
- S. Boumchita, A. Lahrichi, Y. Benjelloun, S. Lairini, V. Nenov,
F. Zerrouq, Application of peanut shell
as a low-cost adsorbent
for the removal of anionic dye from aqueous solutions, J. Mater.
Environ. Sci., 8 (2017) 2353–2364.
- X.-K.O. Yang, L.-P. Yang, Z.-S. Wen, Adsorption of Pb(II) from
solution using peanut shell as biosorbent in the presence
of amino acid and sodium chloride, BioResources, 9 (2014)
2446–2458.
- M.A. Abdel Khalek, G.A. Mahmoud, N.A. El-Kelesh, Synthesis
and characterization of poly-methacrylic acid grafted chitosanbentonite
composite and its application for heavy metals
recovery, Chem. Mater. Res., 2 (2012) 1–12.
- C. Dispenza, N. Grimaldi, M.A. Sabatino, I.L. Soroka,
M. Jonsson, Radiation-engineered functional nanoparticles in
aqueous systems, J. Nanosci. Nanotechnol., 15 (2015) 3445–3467.
- N. Grimaldi, M.A. Sabatino, G. Przybytniak, I. Kaluska,
M.L. Bondì, D. Bulone, S. Alessi, G. Spadaro, C. Dispenza,
High-energy radiation processing, a smart approach to obtain
PVP-graft-AA nanogels, Radiat. Phys. Chem., 94 (2014) 76–79.
- C. Dispenza, M.A. Sabatino, N. Grimaldi, M.R. Mangione,
M. Walo, E. Murugan, M. Jonsson, On the origin of functionalization
in one-pot radiation synthesis of nanogels from
aqueous polymer solutions, RSC Adv., 6 (2016) 2582–2591.
- J.M. Wasikiewicz, H. Mitomo, N. Nagasawa, T. Yagi,
M. Tamada, F. Yoshii, Radiation crosslinking of biodegradable
carboxymethylchitin and carboxymethylchitosan, J. Appl.
Polym. Sci., 102 (2006) 758–767.
- S. Sultana, M. Rabiul Islam, N.C. Dafader, M.E. Haque,
N. Nagasawa, M. Tamada, Effect of mono- and divalent salts
on the properties of carboxymethyl cellulose hydrogel under
irradiation technique, Int. J. Chem. Sci., 10 (2012) 627–634.
- M.F. Abou Taleb, G.A. Mahmoud, S.M. Elsigeny,
E.-S.A. Hegazy, Adsorption and desorption of phosphate and
nitrate ions using quaternary (polypropylene-g-N,N-dimethylamino
ethylmethacrylate) graft copolymer, J. Hazard. Mater.,
159 (2008) 372–379.
- S. Khan, N.M. Ranjha, Effect of degree of cross-linking on
swelling and on drug release of low viscous chitosan/poly(vinyl
alcohol) hydrogels, Polym. Bull., 71 (2014) 2133–2158.
- S.M. Fijul Kabir, P.P. Sikdar, B. Haque, M.A. Rahman Bhuiyan,
A. Ali, M.N. Islam, Cellulose-based hydrogel materials:
chemistry, properties and their prospective applications, Prog.
Biomater, 7 (2018) 153–174.
- N. La, J. Dubey, P. Gaur, N. Verma, A. Verma, Chitosan based
in situ forming polyelectrolyte complexes:
a potential sustained
drug delivery polymeric carrier for high dose drugs, Mater. Sci.
Eng., C, 79 (2017) 491–498.
- S. Faria, C.L. Oliveira Petkowicz, S.A.L. Morais, M.G. Hernandez
Terrones, M.M. Resende, F.P. França, V.L. Cardoso, Characterization
of xanthan gum produced from sugar cane broth,
Carbohydr. Polym., 86 (2011) 469–476.
- N. Kulkarni, P. Wakte, J. Naik, Development of floating
chitosan-xanthan beads for oral controlled release of glipizide,
Int. J. Pharm. Investig., 5 (2015) 73–80.
- G.A. Mahmoud, A. Sayed, M. Thabit, G. Safwat, Chitosan
biopolymer based nanocomposite hydrogels for removal of
methylene blue dye, SN Appl. Sci., 2 (2020) 968, doi: 10.1007/s42452-020-2753-9.
- A. Hendy, E. Khozamy, G.A. Mahmoud, E. Saad, S. Serror,
Implementation of carboxymethyl cellulose/acrylic acid/titanium dioxide nanocomposite hydrogel in remediation of
Cd(II), Zn(II) and Pb(II) for water treatment application, Egypt.
J. Chem., 62 (2019) 1785–1798.
- E.R. Nightingale Jr., Phenomenological theory of ion solvation.
Effective radii of hydrated ions, J. Chem. Phys., 63 (1959)
1381–1388.
- G.A. Mahmoud, M.A. Abdel Khalek, E.M. Shoukry, M. Amin,
A.H. Abdulghany, Removal of phosphate ions from wastewater
by treated hydrogel based on chitosan, Egypt. J. Chem.,
62 (2019) 1537–1549.
- S. Yang, S. Fu, H. Liu, Y. Zhou, X. Li, Hydrogel beads based on
carboxymethyl cellulose for removal heavy metal ions, J. Appl.
Polym. Sci., 119 (2011) 1204–1210.
- L. Pivarčiová, O. Rosskopfová, M. Galamboš, P. Rajec, Sorption
of nickel on chitosan, J. Radioanal. Nucl. Chem., 300 (2014)
361–366.
- O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of
toxic metal ions with magnetic hydrogels, Water Res., 43 (2009)
4403–4411.
- Q. Zhu, Z. Li, Hydrogel-supported nanosized hydrous
manganese dioxide: synthesis, characterization, and adsorption
behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water,
Chem. Eng. J., 281 (2015) 69–80.
- D. Bekchanov, H. Kawakita, M. Mukhamediev, S. Khushvaktov,
M. Juraev, Sorption of cobalt(II) and chromium(III) ions to
nitrogen- and sulfur-containing polyampholyte on the basis of
polyvinylchloride, Polym. Adv. Technol., 32 (2021) 2700–2709.
- C.P. Liu, Removal of cobalt(II) ions from aqueous solution on
zinc(II) ions doping chitosan/hydroxyapatite composite, Adv.
Compos. Lett., 22 (2013), doi: 10.1177/096369351302200603.
- A.L.P. Xavier, O.F.H. Adarme, L.M. Furtado, G.M.D. Ferreira,
L.H.M. Silva, L.F. Gil, L.V.A. Gurgel, Modeling adsorption of
copper(II), cobalt(II) and nickel(II) metal ions from aqueous
solution onto a new carboxylated sugarcane bagasse. Part II:
optimization of monocomponent fixed-bed column adsorption,
J. Colloid Interface Sci., 516 (2018) 431–445.
- K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Mechanism on
the sorption of heavy metals from binary-solution by a low cost
montmorillonite and its desorption potential, Alexandria Eng.
J., 54 (2015) 757–767.
- G.A. Mahmoud, S.E. Abdel-Aal, N.A. Badway, A.A. Elbayaa,
D.F. Ahmed, A novel hydrogel based on agricultural waste for
removal of hazardous dyes from aqueous solution and reuse
process in a secondary adsorption, Polym. Bull., 74 (2017)
337–358.