References
- R. Eisler, Eisler’s Encyclopedia of Environmentally Hazardous
Priority Chemicals, Elsevier Science, Amsterdam, The
Netherlands, 2007. Available at: https://books.google.com/
books?id=B3qXQswP8zIC
- L. Jowa, R. Howd, Should atrazine and related chlorotriazines
be considered carcinogenic for human health risk assessment?,
J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol.
Rev., 29 (2011) 91–144.
- M. Graymore, F. Stagnitti, G. Allinson, Impacts of atrazine in
aquatic ecosystems, Environ. Int., 26 (2001) 483–495.
- J.J. Zhang, Y.C. Lu, J.J Zhang, L.R. Tan, H. Yang, Accumulation
and toxicological response of atrazine in rice crops, Ecotoxicol.
Environ. Saf., 102 (2014) 105–112.
- M. Zhu, L. Wang, Y. Wang, J. Zhou, J. Ding, W. Li, Y. Xin,
S. Fan, Z. Wang, Y. Wang, Biointeractions of herbicide atrazine
with human serum albumin: UV-Vis, fluorescence and circular
dichroism approaches, Int. J. Environ. Res. Public Health,
15 (2018) 116, doi: 10.3390/ijerph15010116.
- M.A. Baghapour, S. Nasseri, Z. Derakhshan, Atrazine
removal from aqueous solutions using submerged biological
aerated filter, J. Environ. Health Sci. Eng., 11 (2013) 1–9,
doi: 10.1186/2052-336X-11-6.
- P. Boffetta, H.O. Adami, C. Berry, J.S. Mandel, Atrazine and
cancer: a review of the epidemiologic evidence, Eur. J. Cancer
Prev., 22 (2013) 169–180.
- D.W. Gammon, C.N. Aldous, W.C. Carr, J.R. Sanborn, K.F. Pfeifer,
A risk assessment of atrazine use in California: human health
and ecological aspects, Pest. Manage. Sci., 61 (2005) 331–355.
- Z. Derakhshan, M.H. Ehrampoush, A.H. Mahvi, M. Dehghani,
M. Faramarzian, H. Eslami, A comparative study of hybrid
membrane photobioreactor and membrane photobioreactor
for simultaneous biological removal of atrazine and CNP from
wastewater: a performance analysis and modeling, Chem. Eng.
J., 355 (2019) 428–438.
- X. Wu, H. He, W.L. Yang, J. Yu, C. Yang, Efficient removal of
atrazine from aqueous solutions using magnetic Saccharomyces
cerevisiae bionanomaterial, Appl. Microbiol. Biotechnol.,
102 (2018) 7597–7610.
- J. Yu, H. He, W.L. Yang, C. Yang, G. Zeng, X. Wu, Magnetic
bionanoparticles of Penicillium sp. Yz11-22N2 doped with
Fe3O4 and encapsulated within PVA-SA gel beads for atrazine
removal, Bioresour. Technol., 260 (2018) 196–203.
- P.K. Ghosh, L. Philip, M. Bandyopadhyay, Anaerobic treatment
of atrazine bearing wastewater, J. Environ. Sci. Health., Part B,
36 (2001) 301–316.
- S. Marcacci, A Phytoremediation Approach to Remove
Pesticides (Atrazine and Lindane) From Contaminated
Environment, Thesis, EPFL (École polytechnique fédérale de
Lausanne), Lausanne, 2004,
doi: 10.5075/epfl-thesis-2950.
- P. Luis, M. Saquib, C. Vinckier, B. Van der Bruggen, Effect of
membrane filtration on ozonation efficiency for removal of
atrazine from surface water, Ind. Eng. Chem. Res., 50 (2011)
8686–8692.
- N.B. Turan, H.S. Erkan, A. Çaglak, S. Bakırdere, G.O. Engin,
Optimization of atrazine removal from synthetic groundwater
by electrooxidation process using titanium dioxide and graphite
electrodes, Sep. Sci. Technol., 55 (2020) 3036–3045.
- A. Bódalo, G. León, A.M. Hidalgo, M. Gómez, M.D. Murcia,
P. Blanco, Atrazine removal from aqueous solutions by
nanofiltration, Desal. Water Treat., 13 (2010) 143–148.
- C. Petrier, B. David, S. Laguian, Ultrasonic degradation at
20 kHz and 500 kHz of atrazine and pentachlorophenol in
aqueous solution: preliminary results, Chemosphere, 32 (1996)
1709–1718.
- M.S. Karmacharya, V.K. Gupta, I. Tyagi, S. Agarwal,
V.K. Jha, Removal of As(III) and As(V) using rubber tire derived
activated carbon modified with alumina composite, J. Mol.
Liq., 216 (2016) 836–844.
- W. Ahmad, S. Qaiser, R. Ullah, B. Mohamed Jan, M.A. Karakassides,
C.E. Salmas, G. Kenanakis, R. Ikram, Utilization of
tires waste-derived magnetic-activated carbon for the removal
of hexavalent chromium from wastewater, Materials (Basel,
Switzerland), 14 (2020) 34, doi: 10.3390/ma14010034.
- H. Tabarinia, M. Zazouli, Z. Yousefi, L.R. Kalankesh, J. Charati,
Response surface methodology, modeling to improve
mercury removal from aqueous solutions using L-cysteine
functionalized multi-walled carbon nanotubes, Global Nest J.,
21(2019) 64–69.
- M. Zazouli, D. Balarak, F. Kariminejad, F. Khosravi, Removal
of fluoride from aqueous solution by using of adsorption onto
modified Lemna minor: adsorption isotherm and kinetics study,
J. Mazandaran Univ. Med. Sci., 24 (2014) 195–204.
- M. Zazouli, A. Azari, A. Dehghan, S. Salmani, R. Malekkolae,
Adsorption of methylene blue from aqueous solution onto
activated carbons developed from eucalyptus bark and Crataegus
oxyacantha core, Water Sci. Technol., 74 (9) (2016) 2021–2035,
https://doi.org/10.2166/wst.2016.287.
- E. Bazrafshan, A. Zarei, H. Nadi, M. Zazouli, Adsorptive
removal of Methyl Orange and Reactive Red 198 dyes by Moringa
peregrina ash, Indian J. Chem. Technol., 21 (2014) 105–113.
- M.A. Ebrahimzadeh, S. Mortazavi-Derazkola, M.A. Zazouli,
Eco-friendly green synthesis and characterization of novel
Fe3O4/SiO2/Cu2O–Ag nanocomposites using Crataegus pentagyna
fruit extract for photocatalytic degradation of organic
contaminants, J. Mater. Sci.: Mater. Electron., 30 (2019),
doi: 10.1007/s10854-019-01440-8.
- B. Kakavandi, J. Salimi, A. Babaei, A. Takdastan, N. Alavi,
A. Neisi, B. Ayoubi-Feiz, Modeling and optimization of
nonylphenol removal from contaminated water media using a
magnetic recoverable composite by artificial neural networks,
Water Sci. Technol., 75 (2017) 1761–1775.
- M. Shirmardi, N. Alavi, E.C. Lima, A. Takdastan, A.H. Mahvi,
A.A. Babaei, Removal of atrazine as an organic micro-pollutant
from aqueous solutions: a comparative study, Process Saf.
Environ. Prot., 103 (2016) 23–35.
- C.P. Amézquita-Marroquín, P. Torres-Lozada, L. Giraldo,
P.D. Húmpola, E. Rivero, P.S. Poon,
J.C. Moreno-Piraján,
Sustainable production of nanoporous carbons: kinetics and
equilibrium studies in the removal of atrazine, J. Colloid
Interface Sci., 562 (2020) 252–267.
- F. Cecen, Ö. Aktas, Activated Carbon for Water and Wastewater
Treatment: Integration of Adsorption and Biological
Treatment, 2011. Available at: https://books.google.com/books?id=ubVxmXZ0j8wC
- S.B. Butt, M. Innayat, M. Riaz, A. Mahmood, Activated Carbon
From Scrap Tires for Water Purification, Int. Wedc Conference,
Water, Engineering and Development Centre, 24 (1998) 340–342.
- P.K. Boruah, B. Sharma, N. Hussain, M.R. Das, Magnetically
recoverable Fe3O4/graphene nanocomposite towards efficient
removal of triazine pesticides from aqueous solution:
investigation of the adsorption phenomenon and specific ion
effect, Chemosphere, 168 (2017) 1058–1067.
- G. Liu, T. Li, X. Yang, Y. She, M. Wang, J. Wang, M. Jin, Competitive
fluorescence assay for specific recognition of atrazine
by magnetic molecularly imprinted polymer based on Fe3O4-chitosan, Carbohydr. Polym., 137 (2016) 75–81.
- G. Liu, X. Yang, T. Li, Y. She, S. Wang, J. Wang, H. Shao,
Preparation of a magnetic molecularly imprinted polymer
using g-C3N4-Fe3O4 for atrazine adsorption, Mater. Lett.,
160 (2015) 472–475.
- V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak,
A comparative investigation on adsorption performances of
mesoporous activated carbon prepared from waste rubber tire
and activated carbon for a hazardous azo dye—Acid Blue 113,
J. Hazard. Mater., 186 (2011) 891–901.
- J. Rios-Hurtado, E. Muzquiz-Ramos, A. Zugasti-Cruz,
D. Hernández, Mechanosynthesis as a simple method to obtain a
magnetic composite (activated carbon/Fe3O4) for hyperthermia
treatment, J. Biomater. Nanobiotechnol., 7 (2016) 19–28.
- C.S. Castro, M.C. Guerreiro, M. Gonçalves, L.C.A. Oliveira,
A.S. Anastácio, Activated carbon/iron oxide composites for the
removal of atrazine from aqueous medium, J. Hazard. Mater.,
164 (2009) 609–614.
- G. Tan, Y. Mao, H. Wang, M. Junaid, N. Xu, Comparison of
biochar- and activated carbon-supported zerovalent iron for the
removal of Se(IV) and Se(VI): influence of pH, ionic strength,
and natural organic matter, Environ. Sci. Pollut. Res., 26 (2019)
21609–21618.
- S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, D. Shu, Recyclable
CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove
bisphenol A from water and their regeneration, Chem. Eng. J.,
260 (2015) 231–239.
- Z. Bai, Q. Yang, J. Wang, Catalytic ozonation of dimethyl
phthalate using Fe3O4/multi-wall carbon nanotubes, Environ.
Technol., 38 (2017) 2048–2057.
- K. Manna, S.K. Srivastava, Fe3O4@carbon@polyaniline trilaminar
core–shell composites as superior microwave absorber in
shielding of electromagnetic pollution, ACS Sustainable Chem.
Eng., 5 (2017) 10710–10721.
- J. Tang, J. Wang, Fe3O4‐MWCNT magnetic nanocomposites as
efficient fenton‐like catalysts for degradation of sulfamethazine
in aqueous solution, ChemistrySelect, 2 (2017) 10727–10735.
- Z. Chen, J. Wang, Z. Pu, Y. Zhao, D. Jia, H. Chen, T. Hayat,
Synthesis of magnetic Fe3O4/CFA composites for the efficient
removal of U(VI) from wastewater, Chem. Eng. J., 320 (2017)
448–457.
- Z.T. Li, B. Lin, L.W. Jiang, E.C. Lin, J. Chen, S.J. Zhang,
D.H. Li, Effective preparation of magnetic superhydrophobic
Fe3O4/PU sponge for oil–water separation, Appl. Surf. Sci.,
427 (2018) 56–64.
- S. Asgari, Z. Fakhari, S. Berijani, Synthesis and characterization
of Fe3O4 magnetic nanoparticles coated with carboxymethyl
chitosan grafted sodium methacrylate, J. Nanostruct., 4 (2014)
55–63.
- S.C. Rodrigues, M.C. Silva, J.A. Torres, M.L. Bianchi, Use of
magnetic activated carbon in a solid phase extraction procedure
for analysis of 2,4-dichlorophenol in water samples, Water Air
Soil Pollut., 231 (2020) 1–13.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti,
J. Rouquerol, T. Siemieniewska, Reporting physisorption data
for gas/solid systems with special reference to the determination
of surface area and porosity, Pure Appl. Chem., 57 (1985)
603–619.
- M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Pham, T.T.T. Vu,
T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle composite:
fabrication, methyl orange removal and regeneration by
hydrogen peroxide, Chemosphere, 85 (2011) 1269–1276.
- N. Yang, S. Zhu, D. Zhang, S. Xu, Synthesis and properties of
magnetic Fe3O4-activated carbon nanocomposite particles for
dye removal, Mater. Lett., 62 (2008) 645–647.
- P. Strachowski, W. Kaszuwara, M. Bystrzejewski, A novel
magnetic composite adsorbent of phenolic compounds based
on waste poly(ethylene terephthalate) and carbon-encapsulated
magnetic nanoparticles, New J. Chem., 41 (2017) 12617–12630.
- D.W. Wang, F. Li, G.Q. Lu, H.M. Cheng, Synthesis and dye
separation performance of ferromagnetic hierarchical porous
carbon, Carbon, 46 (2008) 1593–1599.
- C. Anyika, N.A.M. Asri, Z.A. Majid, A. Yahya, J. Jaafar, Synthesis
and characterization of magnetic activated carbon developed
from palm kernel shells, Nanotechnol. Environ. Eng., 2 (2017)
16,
doi: 10.1007/s41204-017-0027-6.
- N.Y. Rachel, B. Abdelaziz, K. Daouda, N.N. Julius, D.D.E. Gaelle,
Y. Abdelrani, K.M. Joseph, Optimization study of the removal
of atrazine from aqueous solution on to composite activated
carbon-silver using response surface methodology, Mater. Sci.
Appl., 8 (2017) 258–272.
- H.F. Men, H.Q. Liu, Z.L. Zhang, J. Huang, J. Zhang, Y.Y. Zhai,
L. Li, Synthesis, properties and application research of atrazine
Fe3O4@SiO2 magnetic molecularly imprinted polymer, Environ.
Sci. Pollut. Res., 19 (2012) 2271–2280.
- A.A. Morales-Pérez, C. Arias, R.M. Ramírez-Zamora, Removal
of atrazine from water using an iron photo catalyst supported
on activated carbon, Adsorption, 22 (2016) 49–58.
- L. Yu, X. Yang, Y. Ye, D. Wang, Efficient removal of atrazine in
water with a Fe3O4/MWCNTs nanocomposite as a heterogeneous
Fenton-like catalyst, RSC Adv., 5 (2015) 46059–46066.
- T.B. Benzaquén, N.I. Cuello, O.M. Alfano, G.A. Eimer,
Degradation of atrazine over a heterogeneous photo-fenton
process with iron modified MCM-41 materials, Catal. Today,
296 (2017) 51–58.
- V. Makrigianni, A. Giannakas, Y. Deligiannakis, I. Konstantinou,
Adsorption of phenol and methylene blue from aqueous
solutions by pyrolytic tire char: equilibrium and kinetic studies,
J. Environ. Chem. Eng., 3 (2015) 574–582.
- B. Kakavandi, A. Jonidi, R. Rezaei, S. Nasseri, A. Ameri,
A. Esrafily, Synthesis and properties of Fe3O4-activated carbon
magnetic nanoparticles for removal of aniline from aqueous
solution: equilibrium, kinetic and thermodynamic studies, Iran.
J. Environ. Health Sci. Eng., 10 (2013) 1–9.
- I. Akpinar, A.O. Yazaydin, Adsorption of atrazine from water
in metal–organic framework materials, J. Chem. Eng. Data,
63 (2018) 2368–2375.
- O.J. Ajala, F.O. Nwosu, R.K. Ahmed, Adsorption of atrazine
from aqueous solution using unmodified and modified
bentonite clays, Appl. Water Sci., 8 (2018) 1–11, doi: 10.1007/s13201-018-0855-y.
- H. Liu, W. Chen, B. Cui, C. Liu, Enhanced atrazine adsorption
from aqueous solution using chitosan-modified sepiolite,
J. Cent. South Univ., 22 (2015) 4168–4176.
- M. Fruehwirth, M. Sbizzaro, D.M. Rosa, S.C. Sampaio,
R.R.D. Reis, Adsorption of atrazine by biochars produced from
byproducts of the wood industry, Eng. Agric., 40 (2020) 769–776.
- Y.S. Ho, G. McKay, A comparison of chemisorption kinetic
models applied to pollutant removal on various sorbents,
Process Saf. Environ. Prot., 76 (1998) 332–340.