References

  1. R. Eisler, Eisler’s Encyclopedia of Environmentally Hazardous Priority Chemicals, Elsevier Science, Amsterdam, The Netherlands, 2007. Available at: https://books.google.com/ books?id=B3qXQswP8zIC
  2. L. Jowa, R. Howd, Should atrazine and related chlorotriazines be considered carcinogenic for human health risk assessment?, J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev., 29 (2011) 91–144.
  3. M. Graymore, F. Stagnitti, G. Allinson, Impacts of atrazine in aquatic ecosystems, Environ. Int., 26 (2001) 483–495.
  4. J.J. Zhang, Y.C. Lu, J.J Zhang, L.R. Tan, H. Yang, Accumulation and toxicological response of atrazine in rice crops, Ecotoxicol. Environ. Saf., 102 (2014) 105–112.
  5. M. Zhu, L. Wang, Y. Wang, J. Zhou, J. Ding, W. Li, Y. Xin, S. Fan, Z. Wang, Y. Wang, Biointeractions of herbicide atrazine with human serum albumin: UV-Vis, fluorescence and circular dichroism approaches, Int. J. Environ. Res. Public Health, 15 (2018) 116, doi: 10.3390/ijerph15010116.
  6. M.A. Baghapour, S. Nasseri, Z. Derakhshan, Atrazine removal from aqueous solutions using submerged biological aerated filter, J. Environ. Health Sci. Eng., 11 (2013) 1–9, doi: 10.1186/2052-336X-11-6.
  7. P. Boffetta, H.O. Adami, C. Berry, J.S. Mandel, Atrazine and cancer: a review of the epidemiologic evidence, Eur. J. Cancer Prev., 22 (2013) 169–180.
  8. D.W. Gammon, C.N. Aldous, W.C. Carr, J.R. Sanborn, K.F. Pfeifer, A risk assessment of atrazine use in California: human health and ecological aspects, Pest. Manage. Sci., 61 (2005) 331–355.
  9. Z. Derakhshan, M.H. Ehrampoush, A.H. Mahvi, M. Dehghani, M. Faramarzian, H. Eslami, A comparative study of hybrid membrane photobioreactor and membrane photobioreactor for simultaneous biological removal of atrazine and CNP from wastewater: a performance analysis and modeling, Chem. Eng. J., 355 (2019) 428–438.
  10. X. Wu, H. He, W.L. Yang, J. Yu, C. Yang, Efficient removal of atrazine from aqueous solutions using magnetic Saccharomyces cerevisiae bionanomaterial, Appl. Microbiol. Biotechnol., 102 (2018) 7597–7610.
  11. J. Yu, H. He, W.L. Yang, C. Yang, G. Zeng, X. Wu, Magnetic bionanoparticles of Penicillium sp. Yz11-22N2 doped with Fe3O4 and encapsulated within PVA-SA gel beads for atrazine removal, Bioresour. Technol., 260 (2018) 196–203.
  12. P.K. Ghosh, L. Philip, M. Bandyopadhyay, Anaerobic treatment of atrazine bearing wastewater, J. Environ. Sci. Health., Part B, 36 (2001) 301–316.
  13. S. Marcacci, A Phytoremediation Approach to Remove Pesticides (Atrazine and Lindane) From Contaminated Environment, Thesis, EPFL (École polytechnique fédérale de Lausanne), Lausanne, 2004,
    doi: 10.5075/epfl-thesis-2950.
  14. P. Luis, M. Saquib, C. Vinckier, B. Van der Bruggen, Effect of membrane filtration on ozonation efficiency for removal of atrazine from surface water, Ind. Eng. Chem. Res., 50 (2011) 8686–8692.
  15. N.B. Turan, H.S. Erkan, A. Çaglak, S. Bakırdere, G.O. Engin, Optimization of atrazine removal from synthetic groundwater by electrooxidation process using titanium dioxide and graphite electrodes, Sep. Sci. Technol., 55 (2020) 3036–3045.
  16. A. Bódalo, G. León, A.M. Hidalgo, M. Gómez, M.D. Murcia, P. Blanco, Atrazine removal from aqueous solutions by nanofiltration, Desal. Water Treat., 13 (2010) 143–148.
  17. C. Petrier, B. David, S. Laguian, Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution: preliminary results, Chemosphere, 32 (1996) 1709–1718.
  18. M.S. Karmacharya, V.K. Gupta, I. Tyagi, S. Agarwal, V.K. Jha, Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite, J. Mol. Liq., 216 (2016) 836–844.
  19. W. Ahmad, S. Qaiser, R. Ullah, B. Mohamed Jan, M.A. Karakassides, C.E. Salmas, G. Kenanakis, R. Ikram, Utilization of tires waste-derived magnetic-activated carbon for the removal of hexavalent chromium from wastewater, Materials (Basel, Switzerland), 14 (2020) 34, doi: 10.3390/ma14010034.
  20. H. Tabarinia, M. Zazouli, Z. Yousefi, L.R. Kalankesh, J. Charati, Response surface methodology, modeling to improve mercury removal from aqueous solutions using L-cysteine functionalized multi-walled carbon nanotubes, Global Nest J., 21(2019) 64–69.
  21. M. Zazouli, D. Balarak, F. Kariminejad, F. Khosravi, Removal of fluoride from aqueous solution by using of adsorption onto modified Lemna minor: adsorption isotherm and kinetics study, J. Mazandaran Univ. Med. Sci., 24 (2014) 195–204.
  22. M. Zazouli, A. Azari, A. Dehghan, S. Salmani, R. Malekkolae, Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core, Water Sci. Technol., 74 (9) (2016) 2021–2035, https://doi.org/10.2166/wst.2016.287.
  23. E. Bazrafshan, A. Zarei, H. Nadi, M. Zazouli, Adsorptive removal of Methyl Orange and Reactive Red 198 dyes by Moringa peregrina ash, Indian J. Chem. Technol., 21 (2014) 105–113.
  24. M.A. Ebrahimzadeh, S. Mortazavi-Derazkola, M.A. Zazouli, Eco-friendly green synthesis and characterization of novel Fe3O4/SiO2/Cu2O–Ag nanocomposites using Crataegus pentagyna fruit extract for photocatalytic degradation of organic contaminants, J. Mater. Sci.: Mater. Electron., 30 (2019),
    doi: 10.1007/s10854-019-01440-8.
  25. B. Kakavandi, J. Salimi, A. Babaei, A. Takdastan, N. Alavi, A. Neisi, B. Ayoubi-Feiz, Modeling and optimization of nonylphenol removal from contaminated water media using a magnetic recoverable composite by artificial neural networks, Water Sci. Technol., 75 (2017) 1761–1775.
  26. M. Shirmardi, N. Alavi, E.C. Lima, A. Takdastan, A.H. Mahvi, A.A. Babaei, Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study, Process Saf. Environ. Prot., 103 (2016) 23–35.
  27. C.P. Amézquita-Marroquín, P. Torres-Lozada, L. Giraldo, P.D. Húmpola, E. Rivero, P.S. Poon,
    J.C. Moreno-Piraján, Sustainable production of nanoporous carbons: kinetics and equilibrium studies in the removal of atrazine, J. Colloid Interface Sci., 562 (2020) 252–267.
  28. F. Cecen, Ö. Aktas, Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment, 2011. Available at: https://books.google.com/books?id=ubVxmXZ0j8wC
  29. S.B. Butt, M. Innayat, M. Riaz, A. Mahmood, Activated Carbon From Scrap Tires for Water Purification, Int. Wedc Conference, Water, Engineering and Development Centre, 24 (1998) 340–342.
  30. P.K. Boruah, B. Sharma, N. Hussain, M.R. Das, Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect, Chemosphere, 168 (2017) 1058–1067.
  31. G. Liu, T. Li, X. Yang, Y. She, M. Wang, J. Wang, M. Jin, Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan, Carbohydr. Polym., 137 (2016) 75–81.
  32. G. Liu, X. Yang, T. Li, Y. She, S. Wang, J. Wang, H. Shao, Preparation of a magnetic molecularly imprinted polymer using g-C3N4-Fe3O4 for atrazine adsorption, Mater. Lett., 160 (2015) 472–475.
  33. V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113, J. Hazard. Mater., 186 (2011) 891–901.
  34. J. Rios-Hurtado, E. Muzquiz-Ramos, A. Zugasti-Cruz, D. Hernández, Mechanosynthesis as a simple method to obtain a magnetic composite (activated carbon/Fe3O4) for hyperthermia treatment, J. Biomater. Nanobiotechnol., 7 (2016) 19–28.
  35. C.S. Castro, M.C. Guerreiro, M. Gonçalves, L.C.A. Oliveira, A.S. Anastácio, Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium, J. Hazard. Mater., 164 (2009) 609–614.
  36. G. Tan, Y. Mao, H. Wang, M. Junaid, N. Xu, Comparison of biochar- and activated carbon-supported zerovalent iron for the removal of Se(IV) and Se(VI): influence of pH, ionic strength, and natural organic matter, Environ. Sci. Pollut. Res., 26 (2019) 21609–21618.
  37. S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, D. Shu, Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration, Chem. Eng. J., 260 (2015) 231–239.
  38. Z. Bai, Q. Yang, J. Wang, Catalytic ozonation of dimethyl phthalate using Fe3O4/multi-wall carbon nanotubes, Environ. Technol., 38 (2017) 2048–2057.
  39. K. Manna, S.K. Srivastava, Fe3O4@carbon@polyaniline trilaminar core–shell composites as superior microwave absorber in shielding of electromagnetic pollution, ACS Sustainable Chem. Eng., 5 (2017) 10710–10721.
  40. J. Tang, J. Wang, Fe3O4‐MWCNT magnetic nanocomposites as efficient fenton‐like catalysts for degradation of sulfamethazine in aqueous solution, ChemistrySelect, 2 (2017) 10727–10735.
  41. Z. Chen, J. Wang, Z. Pu, Y. Zhao, D. Jia, H. Chen, T. Hayat, Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(VI) from wastewater, Chem. Eng. J., 320 (2017) 448–457.
  42. Z.T. Li, B. Lin, L.W. Jiang, E.C. Lin, J. Chen, S.J. Zhang, D.H. Li, Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil–water separation, Appl. Surf. Sci., 427 (2018) 56–64.
  43. S. Asgari, Z. Fakhari, S. Berijani, Synthesis and characterization of Fe3O4 magnetic nanoparticles coated with carboxymethyl chitosan grafted sodium methacrylate, J. Nanostruct., 4 (2014) 55–63.
  44. S.C. Rodrigues, M.C. Silva, J.A. Torres, M.L. Bianchi, Use of magnetic activated carbon in a solid phase extraction procedure for analysis of 2,4-dichlorophenol in water samples, Water Air Soil Pollut., 231 (2020) 1–13.
  45. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  46. M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Pham, T.T.T. Vu, T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide, Chemosphere, 85 (2011) 1269–1276.
  47. N. Yang, S. Zhu, D. Zhang, S. Xu, Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal, Mater. Lett., 62 (2008) 645–647.
  48. P. Strachowski, W. Kaszuwara, M. Bystrzejewski, A novel magnetic composite adsorbent of phenolic compounds based on waste poly(ethylene terephthalate) and carbon-encapsulated magnetic nanoparticles, New J. Chem., 41 (2017) 12617–12630.
  49. D.W. Wang, F. Li, G.Q. Lu, H.M. Cheng, Synthesis and dye separation performance of ferromagnetic hierarchical porous carbon, Carbon, 46 (2008) 1593–1599.
  50. C. Anyika, N.A.M. Asri, Z.A. Majid, A. Yahya, J. Jaafar, Synthesis and characterization of magnetic activated carbon developed from palm kernel shells, Nanotechnol. Environ. Eng., 2 (2017) 16,
    doi: 10.1007/s41204-017-0027-6.
  51. N.Y. Rachel, B. Abdelaziz, K. Daouda, N.N. Julius, D.D.E. Gaelle, Y. Abdelrani, K.M. Joseph, Optimization study of the removal of atrazine from aqueous solution on to composite activated carbon-silver using response surface methodology, Mater. Sci. Appl., 8 (2017) 258–272.
  52. H.F. Men, H.Q. Liu, Z.L. Zhang, J. Huang, J. Zhang, Y.Y. Zhai, L. Li, Synthesis, properties and application research of atrazine Fe3O4@SiO2 magnetic molecularly imprinted polymer, Environ. Sci. Pollut. Res., 19 (2012) 2271–2280.
  53. A.A. Morales-Pérez, C. Arias, R.M. Ramírez-Zamora, Removal of atrazine from water using an iron photo catalyst supported on activated carbon, Adsorption, 22 (2016) 49–58.
  54. L. Yu, X. Yang, Y. Ye, D. Wang, Efficient removal of atrazine in water with a Fe3O4/MWCNTs nanocomposite as a heterogeneous Fenton-like catalyst, RSC Adv., 5 (2015) 46059–46066.
  55. T.B. Benzaquén, N.I. Cuello, O.M. Alfano, G.A. Eimer, Degradation of atrazine over a heterogeneous photo-fenton process with iron modified MCM-41 materials, Catal. Today, 296 (2017) 51–58.
  56. V. Makrigianni, A. Giannakas, Y. Deligiannakis, I. Konstantinou, Adsorption of phenol and methylene blue from aqueous solutions by pyrolytic tire char: equilibrium and kinetic studies, J. Environ. Chem. Eng., 3 (2015) 574–582.
  57. B. Kakavandi, A. Jonidi, R. Rezaei, S. Nasseri, A. Ameri, A. Esrafily, Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies, Iran. J. Environ. Health Sci. Eng., 10 (2013) 1–9.
  58. I. Akpinar, A.O. Yazaydin, Adsorption of atrazine from water in metal–organic framework materials, J. Chem. Eng. Data, 63 (2018) 2368–2375.
  59. O.J. Ajala, F.O. Nwosu, R.K. Ahmed, Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays, Appl. Water Sci., 8 (2018) 1–11, doi: 10.1007/s13201-018-0855-y.
  60. H. Liu, W. Chen, B. Cui, C. Liu, Enhanced atrazine adsorption from aqueous solution using chitosan-modified sepiolite, J. Cent. South Univ., 22 (2015) 4168–4176.
  61. M. Fruehwirth, M. Sbizzaro, D.M. Rosa, S.C. Sampaio, R.R.D. Reis, Adsorption of atrazine by biochars produced from byproducts of the wood industry, Eng. Agric., 40 (2020) 769–776.
  62. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76 (1998) 332–340.