References

  1. United States Environmental Protection Agency (EPA), Atrazine Background [Internet], EPA Victoria, c2008 [cited 19 August 2008]. Available at: http://www.epa.gov/opp00001/factsheets/ atrazine_background.htm
  2. European Policy Document, Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy [Internet], c2000 [cited 22 December 2000]. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ. do?uri=CELEX:32000L0060:en:NOT
  3. Agency for Toxic Substances and Disease Registry (ATSDR), Interaction Profıle for Atrazine, Deethylatrazine, diazinon, Nitrate and Simazine [Internet], USA, c2006 [cited August 2006]. Available at: https://www.atsdr.cdc.gov/interactionprofiles/ip10.html
  4. T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and its application in decontamination technologies, Crit. Rev. Env. Sci. Technol., 45 (2015) 1756–1800.
  5. W.-D. Oh, Z. Dong, T.-T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects, Appl. Catal., B, 194 (2016) 169–201.
  6. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interacting transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705–3712.
  7. L. Dogliotti, E. Hayon, Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions, J. Phys. Chem., 71 (1967) 2511–2516.
  8. D.A. House, Kinetics and mechanism of oxidation by peroxydisulfate, Chem. Rev., 62 (1961) 185–203.
  9. I.M. Kolthoff, I.K. Miller, The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium, J. Am. Chem. Soc., 73 (1951) 3055–3059.
  10. J. Hoigné, Inter-calibration of OH radical sources and water quality parameters, Water Sci. Technol., 35 (1997) 1–8.
  11. A. Tsıtonakı, B. Petri, M. Crımı, H. Mosbæk, R.L. Siegrist, P.L. Bjerg, In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review, Crit. Rev. Env. Sci. Technol., 40 (2010) 55–91.
  12. Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, S. Wang, Magnetic recoverable Mn/Fe2O4 and Mn/Fe2O4 – graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants, J. Hazard. Mater., 270 (2014) 61–70.
  13. L.D. Lai, H.Y. Zhou, B. Lai, Heterogeneous degradation of bisphenol A by peroxymonosulfate activated with vanadiumtitanium magnetite: performance, transformation pathways and mechanism, Chem. Eng. J., 349 (2018) 633–645.
  14. J.F. Yan, J. Li, J.L. Peng, H. Zhang, H. Zhang, B. Lai, Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: optimization, degradation pathways and toxicity evaluation, Chem. Eng. J., 359 (2019) 1097–1110.
  15. J.L. Peng, X.H. Lu, X. Jiang, Y.H. Zhang, Q.X. Chen, B. Lai, G. Yao, Degradation of atrazine by persulfate activation with copper sulfide (CuS): kinetics study, degradation pathways and mechanism, Chem. Eng. J., 354 (2018) 740–752.
  16. P. Avetta, A. Pensato, M. Minella, M. Malandrino, V. Maurino, C. Minero, K. Hanna, D. Vione, Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions, Environ. Sci. Technol., 49 (2015) 1043–1050.
  17. S.R. Pouran, A.R. Abdul Aziz, W. Daud, Review of the main advances in photo-Fenton oxidation system for recalcitrant wastewaters, J. Ind. Eng. Chem., 21 (2014) 53–69.
  18. X. Xue, K. Hanna, C. Despas, F. Wu, N. Deng, Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH, J. Mol. Catal. A: Chem., 311 (2015) 29–35.
  19. W. Huang, M. Brigante, F. Wu, K. Hanna, G. Mailhot, Development of a new homogenous photo-Fenton process using Fe(III)-EDDS complexes, J. Photochem. Photobiol., A, 239 (2012) 17–23.
  20. L. Zhu, Y. Zhang, H. Tang, Efficient visible light photo-Fenton like the degradation of organic pollutants using in situ surfacemodified BiFeO3 as a catalyst, J. Environ. Sci. (China), 25 (2013) 1213–1225.
  21. N. Klamerth, S. Malato, A. Aguera, A. Fernandez-Alba, Photo-Fenton, and modified photo-Fenton at neutral pH for treating emerging contaminants in wastewater treatment plant effluents: a comparison, Water Res., 47 (2013) 833–840.
  22. A. De Luca, R.F. Dantas, A.S.M. Simões, I.A.S. Toscano, G. Lofrano, A. Cruz, S. Esplugas, Atrazine removal in municipal secondary effluents by Fenton and photo-Fenton treatments, Chem. Eng. Technol., 36 (2013) 1–9.
  23. Y. Gao, P. Champagne, D. Blair, O. He, T. Song, Activated persulfate by iron-based materials used for refractory organics degradation: a review, Water Sci. Technol., 81 (2020) 853–875.
  24. C. Luo, J. Ma, J. Jiang, Y. Liu, Y. Song, Y. Yang, Y. Guan, D. Wu, Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5 and UV/S2O8, Water Res., 80 (2015) 99–108.
  25. X. Ximeng, C. Weiming, Z. Shaoyan, R. Xu, L. Dan, Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: reactivity, mechanism and stability, J. Hazard. Mater., 377 (2019) 62–69.
  26. M.M. Whalen, B.G. Loganathan, N. Yamashita, T. Saito, Immunomodulation of human natural killer cell cytotoxic function by triazine and carbamate pesticides, Chem.-Biol. Interact., 145 (2003) 311–319.
  27. L. Zhou, S. Zhou, Modeling of Fe(II)-activated persulfate oxidation using atrazine as a target contaminant, Sep. Purif. Technol., 169 (2016) 59–65.