References
- United States Environmental Protection Agency (EPA), Atrazine
Background [Internet], EPA Victoria, c2008 [cited 19 August 2008]. Available at: http://www.epa.gov/opp00001/factsheets/
atrazine_background.htm
- European Policy Document, Directive 2000/60/EC of the
European Parliament and of the Council Establishing a
Framework for Community Action in the Field of Water
Policy [Internet], c2000 [cited 22 December 2000]. Available
at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:32000L0060:en:NOT
- Agency for Toxic Substances and Disease Registry (ATSDR),
Interaction Profıle for Atrazine, Deethylatrazine, diazinon,
Nitrate and Simazine [Internet], USA, c2006 [cited August 2006].
Available at: https://www.atsdr.cdc.gov/interactionprofiles/ip10.html
- T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and its
application in decontamination technologies, Crit. Rev. Env. Sci.
Technol., 45 (2015) 1756–1800.
- W.-D. Oh, Z. Dong, T.-T. Lim, Generation of sulfate radical
through heterogeneous catalysis for organic contaminants
removal: current development, challenges and prospects, Appl.
Catal., B, 194 (2016) 169–201.
- G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the
interacting transition metals with common oxidants, Environ.
Sci. Technol., 38 (2004) 3705–3712.
- L. Dogliotti, E. Hayon, Flash photolysis of per[oxydi]sulfate
ions in aqueous solutions. The sulfate and ozonide radical
anions, J. Phys. Chem., 71 (1967) 2511–2516.
- D.A. House, Kinetics and mechanism of oxidation by
peroxydisulfate, Chem. Rev., 62 (1961) 185–203.
- I.M. Kolthoff, I.K. Miller, The chemistry of persulfate. I. The
kinetics and mechanism of the decomposition of the persulfate
ion in aqueous medium, J. Am. Chem. Soc., 73 (1951) 3055–3059.
- J. Hoigné, Inter-calibration of OH radical sources and water
quality parameters, Water Sci. Technol., 35 (1997) 1–8.
- A. Tsıtonakı, B. Petri, M. Crımı, H. Mosbæk, R.L. Siegrist,
P.L. Bjerg, In situ chemical oxidation of contaminated soil and
groundwater using persulfate: a review, Crit. Rev. Env. Sci.
Technol., 40 (2010) 55–91.
- Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, S. Wang, Magnetic
recoverable Mn/Fe2O4 and Mn/Fe2O4
– graphene hybrid as
heterogeneous catalysts of peroxymonosulfate activation for
efficient degradation of aqueous organic pollutants, J. Hazard.
Mater., 270 (2014) 61–70.
- L.D. Lai, H.Y. Zhou, B. Lai, Heterogeneous degradation of
bisphenol A by peroxymonosulfate activated with vanadiumtitanium
magnetite: performance, transformation pathways
and mechanism, Chem. Eng. J., 349 (2018) 633–645.
- J.F. Yan, J. Li, J.L. Peng, H. Zhang, H. Zhang, B. Lai, Efficient
degradation of sulfamethoxazole by the CuO@Al2O3 (EPC)
coupled PMS system: optimization, degradation pathways and
toxicity evaluation, Chem. Eng. J., 359 (2019) 1097–1110.
- J.L. Peng, X.H. Lu, X. Jiang, Y.H. Zhang, Q.X. Chen, B. Lai,
G. Yao, Degradation of atrazine by persulfate activation with
copper sulfide (CuS): kinetics study, degradation pathways and
mechanism, Chem. Eng. J., 354 (2018) 740–752.
- P. Avetta, A. Pensato, M. Minella, M. Malandrino, V. Maurino,
C. Minero, K. Hanna, D. Vione, Activation of persulfate by
irradiated magnetite: implications for the degradation of phenol
under heterogeneous photo-Fenton-like conditions, Environ.
Sci. Technol., 49 (2015) 1043–1050.
- S.R. Pouran, A.R. Abdul Aziz, W. Daud, Review of the main
advances in photo-Fenton oxidation system for recalcitrant
wastewaters, J. Ind. Eng. Chem., 21 (2014) 53–69.
- X. Xue, K. Hanna, C. Despas, F. Wu, N. Deng, Effect of chelating
agent on the oxidation rate of PCP in the magnetite/H2O2 system
at neutral pH, J. Mol. Catal. A: Chem., 311 (2015) 29–35.
- W. Huang, M. Brigante, F. Wu, K. Hanna, G. Mailhot,
Development of a new homogenous photo-Fenton process
using Fe(III)-EDDS complexes, J. Photochem. Photobiol., A,
239 (2012) 17–23.
- L. Zhu, Y. Zhang, H. Tang, Efficient visible light photo-Fenton
like the degradation of organic pollutants using in situ surfacemodified
BiFeO3 as a catalyst, J. Environ. Sci. (China), 25 (2013)
1213–1225.
- N. Klamerth, S. Malato, A. Aguera, A. Fernandez-Alba, Photo-Fenton, and modified photo-Fenton at neutral pH for treating
emerging contaminants in wastewater treatment plant effluents:
a comparison, Water Res., 47 (2013) 833–840.
- A. De Luca, R.F. Dantas, A.S.M. Simões, I.A.S. Toscano,
G. Lofrano, A. Cruz, S. Esplugas, Atrazine removal in municipal
secondary effluents by Fenton and photo-Fenton treatments,
Chem. Eng. Technol., 36 (2013) 1–9.
- Y. Gao, P. Champagne, D. Blair, O. He, T. Song, Activated
persulfate by iron-based materials used for refractory organics
degradation: a review, Water Sci. Technol., 81 (2020) 853–875.
- C. Luo, J. Ma, J. Jiang, Y. Liu, Y. Song, Y. Yang, Y. Guan, D. Wu,
Simulation and comparative study on the oxidation kinetics
of atrazine by UV/H2O2, UV/HSO5− and UV/S2O8, Water Res.,
80 (2015) 99–108.
- X. Ximeng, C. Weiming, Z. Shaoyan, R. Xu, L. Dan, Atrazine
degradation using Fe3O4-sepiolite catalyzed persulfate:
reactivity, mechanism and stability, J. Hazard. Mater., 377 (2019)
62–69.
- M.M. Whalen, B.G. Loganathan, N. Yamashita, T. Saito,
Immunomodulation of human natural killer cell cytotoxic
function by triazine and carbamate pesticides, Chem.-Biol.
Interact., 145 (2003) 311–319.
- L. Zhou, S. Zhou, Modeling of Fe(II)-activated persulfate
oxidation using atrazine as a target contaminant, Sep. Purif.
Technol., 169 (2016) 59–65.