References
- J. Hu, Z. Li, A. Zhang, S. Mao, I.R. Jenkinson, W. Tao, Using a
strong chemical oxidant, potassium ferrate
(K2FeO4), in waste
activated sludge treatment: a review, Environ. Res., 188 (2020)
109764, doi:10.1016/j.envres.2020.109764.
- C.-C. Chien, C.-M. Kao, D.-Y. Chen, S.-C. Chen, C.-C. Chen,
Biotransformation of trinitrotoluene (TNT) by Pseudomonas
spp. isolated from a TNT-contaminated environment, Environ.
Toxicol. Chem., 33 (2014) 1059–1063.
- M. De Lorme, M. Craig, Biotransformation of 2,4,6-trinitrotoluene
by pure culture ruminal bacteria, Curr. Microbiol., 58 (2009)
81–86.
- C.K. Katseanes, M.A. Chappell, B.G. Hopkins, B.D. Durham,
C.L. Price, B.E. Porter, L.F. Miller, Multivariate soil fertility
relationships for predicting the environmental persistence
of 2,4,6-trinitrotoluene (TNT) and
1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils,
J. Environ. Manage., 203 (2017) 383–390.
- E.L. Rylott, A. Lorenz, N.C. Bruce, Biodegradation and
biotransformation of explosives, Curr. Opin. Biotechnol.,
22 (2011) 434–440.
- Y. Deng, S.A. Meyer, X. Guan, B.L. Escalon, J. Ai, M.S. Wilbanks,
R. Welti, N. Garcia-Reyero, E.J. Perkins, Analysis of common and
specific mechanisms of liver function affected by nitrotoluene
compounds, PLoS One, 6 (2011) e14662, doi: 10.1371/journal.pone.0014662.
- J.A. Hathaway, Trinitrotoluene: a review of reported doserelated
effects providing documentation for a workplace
standard, J. Occup. Med., 19 (1977) 341–345.
- H.-Y. Liao, C.-C. Chien, P. Tang, C.-C. Chen, C.-Y. Chen,
S.-C. Chen, The integrated analysis of transcriptome and
proteome for exploring the biodegradation mechanism of
2,4,6-trinitrotoluene by Citrobacter sp., J. Hazard. Mater.,
349 (2018) 79–90.
- H.-Y. Liao, C.-M. Kao, C.-L. Yao, P.-W. Chiu, C.-C. Yao, S.-C. Chen,
2,4,6-Trinitrotoluene induces apoptosis via ROS-regulated
mitochondrial dysfunction and endoplasmic reticulum stress in
HepG2 and Hep3B cells, Sci. Rep., 7 (2017) 8148, doi: 10.1038/
s41598-017-08308-z.
- A. Esteve-Núñez, A. Caballero, J.L. Ramos, Biological
degradation of 2,4,6-trinitrotoluene, Microbiol. Mol. Biol. Rev.,
65 (2001) 335–352.
- R. Johnson, P. Tratnyek, R. Miehr, R.B. Thoms, J. Bandstra,
Reduction of hydraulic conductivity and reactivity in zerovalent
iron columns by oxygen and TNT, Ground Water Monit.
Rem., 25 (2005) 129–136.
- D. Kalderis, A.L. Juhasz, R. Boopathy, S. Comfort, Soils
contaminated with explosives: environmental fate and
evaluation of state-of-the-art remediation processes (IUPAC
Technical Report), Pure Appl. Chem., 83 (2011) 1407–1484.
- J. Lamba, S. Anand, J. Dutta, S. Chatterjee, S. Nagar,
S. Mary Celin, P. Kumar Ravi, Study on aerobic degradation
of 2,4,6-trinitrotoluene (TNT) using Pseudarthrobacter
chlorophenolicus collected from the contaminated site, Environ.
Monit. Assess., 193 (2021) 193, doi: 10.1007/s10661-021-08869-7.
- Y.Y. Eng, V.K. Sharma, A.K. Ray, Ferrate(VI): green chemistry
oxidant for degradation of cationic surfactant, Chemosphere,
69 (2006) 1785–1790.
- E. Neyens, J. Baeyens, A review of thermal sludge pre-treatment
processes to improve dewaterability, J. Hazard. Mater., 98 (2003)
51–67.
- C. Wu, L. Jin, P. Zhang, G. Zhang, Effects of potassium
ferrate oxidation on sludge disintegration, dewaterability
and anaerobic biodegradation, Int. Biodeterior. Biodegrad.,
102 (2015) 137–142.
- J. Wu, T. Lu, J. Bi, H. Yuan, Y. Chen, A novel sewage sludge
biochar and ferrate synergetic conditioning for enhancing
sludge dewaterability, Chemosphere, 237 (2019) 124339,
doi:10.1016/j.chemosphere.2019.07.070.
- Z.-W. He, W.-Z. Liu, Q. Gao, C.-C. Tang, L. Wang, Z.-C. Guo,
A.-J. Zhou, A.-J. Wang, Potassium ferrate addition as an
alternative pre-treatment to enhance short-chain fatty acids
production from waste activated sludge, Bioresour. Technol.,
247 (2018) 174–181.
- K. Manoli, L.M. Morrison, M.W. Sumarah, G. Nakhla, A.K. Ray,
V.K. Sharma, Pharmaceuticals and pesticides in secondary
effluent wastewater: identification and enhanced removal by
acid-activated ferrate(VI), Water Res., 148 (2019) 272–280.
- F. Ghanbari, M. Moradi, Application of peroxymonosulfate
and its activation methods for degradation of environmental
organic pollutants: review, Chem. Eng. J, 310 (2017) 41–62.
- M. Moradi, F. Ghanbari, Application of response surface
method for coagulation process in leachate treatment as
pretreatment for Fenton process: biodegradability improvement,
J. Water Process Eng., 4 (2014) 67–73.
- M.M. Amin, F. Teimouri, Comparison of simple ozonation
and direct hydrogen peroxide processes in TNT removal
from aqueous solution, J. Water Supply Res. Technol. AQUA,
65 (2016) 564–569.
- K. Naddafi, N. Rastkari, R. Nabizadeh, R. Saeedi, M. Gholami,
Removal of 2,4,6-trichlorophenol from aqueous solutions by
cetylpyridinium bromide (CPB)-modified zeolite in batch and
continuous systems, Desal. Water Treat., 86 (2017) 131–138.
- Y.-H. Huang, Y.-F. Huang, C.-I. Huang, C.-Y. Chen, Efficient
decolorization of azo dye Reactive Black B involving aromatic
fragment degradation in buffered Co2+/PMS oxidative
processes with a ppb level dosage
of Co2+-catalyst, J. Hazard.
Mater., 170 (2009) 1110–1118.
- A. Akbari, M. Sadani, M.M. Amin, F. Teimouri, M. Khajeh,
M. Mahdavi, M. Hadi, Managing sulfate ions produced by
sulfate radical-advanced oxidation process using sulfatereducing
bacteria for the subsequent biological treatment,
J. Environ. Chem. Eng., 6 (2018) 5929–5937.
- Q. Chen, F. Ji, T. Liu, P. Yan, W. Guan, X. Xu, Synergistic effect of
bifunctional Co–TiO2 catalyst on degradation of Rhodamine B:
Fenton-photo hybrid process, Chem. Eng. J., 229 (2013) 57–65.
- Y. Feng, D. Wu, Y. Deng, T. Zhang, K. Shih, Sulfate radicalmediated
degradation of sulfadiazine by CuFeO2 rhombohedral
crystal-catalyzed peroxymonosulfate: synergistic effects and
mechanisms, Environ. Sci. Technol., 50 (2016) 3119–3127.
- M. Golshan, B. Kakavandi, M. Ahmadi, M. Azizi, Photocatalytic
activation of peroxymonosulfate by TiO2 anchored on cupper
ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process
feasibility, mechanism and pathway, J. Hazard. Mater.,
359 (2018) 325–337.
- B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and its
application in decontamination technologies, Crit. Rev. Env. Sci.
Technol., 45 (2015) 1756–1800.
- A. Akbari, M. Sadani, A. Sedighizadeh, A. Sedghi, M. Khajeh,
M. Mahmoudi, A. Bagheri, F. Teimouri, J. Behin, Reduction
of dinitrotoluene by hydrated electrons generated from
UV irradiation of toluene in wastewater: towards cleaner
production, J. Cleaner Prod., 238 (2019) 117857, doi: 10.1016/j.
jclepro.2019.117857.
- I. Ciabatti, F. Tognotti, L. Lombardi, Treatment and reuse of
dyeing effluents by potassium ferrate, Desalination, 250 (2010)
222–228.
- V.K. Sharma, G.W. Luther 3rd, F.J. Millero, Mechanisms
of oxidation of organosulfur compounds by ferrate(VI),
Chemosphere, 82 (2011) 1083–1089.
- J. Saien, A.R. Soleymani, J.H. Sun, Parametric optimization of
individual and hybridized AOPs of Fe2+/H2O2 and UV/S2O22−
for rapid dye destruction in aqueous media, Desalination,
279 (2011) 298–305.
- W.H. Glaze, J.-W. Kang, D.H. Chapin, The chemistry of water
treatment processes involving ozone, hydrogen peroxide and
ultraviolet radiation, Ozone Sci. Eng.; J. Int. Ozone Assoc.,
9 (1987) 335–352.
- L.A. Bernal-Martínez, C.E. Barrera-Díaz, C. Solís-Morelos,
R. Natividad, Synergy of electrochemical and ozonation
processes in industrial wastewater treatment, Chem. Eng. J.,
165 (2010) 71–77.
- W. Qin, G. Fang, Y. Wang, D. Zhou, Mechanistic understanding of
polychlorinated biphenyls degradation by peroxymonosulfate
activated with CuFe2O4 nanoparticles: key role of superoxide
radicals, Chem. Eng. J., 348 (2018) 526–534.
- D.N. Bui, T.T. Minh, Investigation of TNT red wastewater
treatment technology using the combination of advanced
oxidation processes, Sci. Total Environ., 756 (2021) 143852,
doi: 10.1016/j.scitotenv.2020.143852.
- M.E. Walsh, T.F. Jenkins, Identification of TNT Transformation
Product in Soil, U.S. Army Corps of Engineers, 1992.
- K. Ayoub, E D. van Hullebusch, M. Cassir, A. Bermond,
Application of advanced oxidation processes for TNT removal:
a review, J. Hazard. Mater., 25 (2010) 10–28.
- M.A. Zarei, H. Tahermansouri, Y. Bayat, The oxidation of
2,4,6-trinitrotoluene with an ozone-oxygen mixture:
a simple
method for preparation of 1,3,5-trinitrobenzene, J. Chem.,
2013 (2013) 958286, doi:10.1155/2013/958286.
- D.C. Schmelling, K.A. Gray, P.V. Kamat, Radiation-induced
reactions of 2,4,6-trinitrotoluene in aqueous solution, Environ.
Sci. Technol., 32 (1998) 971–974.
- J. Qiao, S. Luo, P. Yang, W. Jiao, Y. Liu, Degradation of
nitrobenzene-containing wastewater by ozone/persulfate
oxidation process in a rotating packed bed, J. Taiwan Inst.
Chem. Eng., 99 (2019) 1–8.
- I.A. Bamgbose, T.A. Anderson, Assessment of three plant-based
biodiesels using a Daphnia magna bioassay, Environ. Sci. Pollut.
Res., 25 (2018) 4506–4515.