References

  1. J. Hu, Z. Li, A. Zhang, S. Mao, I.R. Jenkinson, W. Tao, Using a strong chemical oxidant, potassium ferrate
    (K2FeO4), in waste activated sludge treatment: a review, Environ. Res., 188 (2020) 109764, doi:10.1016/j.envres.2020.109764.
  2. C.-C. Chien, C.-M. Kao, D.-Y. Chen, S.-C. Chen, C.-C. Chen, Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment, Environ. Toxicol. Chem., 33 (2014) 1059–1063.
  3. M. De Lorme, M. Craig, Biotransformation of 2,4,6-trinitrotoluene by pure culture ruminal bacteria, Curr. Microbiol., 58 (2009) 81–86.
  4. C.K. Katseanes, M.A. Chappell, B.G. Hopkins, B.D. Durham, C.L. Price, B.E. Porter, L.F. Miller, Multivariate soil fertility relationships for predicting the environmental persistence of 2,4,6-trinitrotoluene (TNT) and
    1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils, J. Environ. Manage., 203 (2017) 383–390.
  5. E.L. Rylott, A. Lorenz, N.C. Bruce, Biodegradation and biotransformation of explosives, Curr. Opin. Biotechnol., 22 (2011) 434–440.
  6. Y. Deng, S.A. Meyer, X. Guan, B.L. Escalon, J. Ai, M.S. Wilbanks, R. Welti, N. Garcia-Reyero, E.J. Perkins, Analysis of common and specific mechanisms of liver function affected by nitrotoluene compounds, PLoS One, 6 (2011) e14662, doi: 10.1371/journal.pone.0014662.
  7. J.A. Hathaway, Trinitrotoluene: a review of reported doserelated effects providing documentation for a workplace standard, J. Occup. Med., 19 (1977) 341–345.
  8. H.-Y. Liao, C.-C. Chien, P. Tang, C.-C. Chen, C.-Y. Chen, S.-C. Chen, The integrated analysis of transcriptome and proteome for exploring the biodegradation mechanism of 2,4,6-trinitrotoluene by Citrobacter sp., J. Hazard. Mater., 349 (2018) 79–90.
  9. H.-Y. Liao, C.-M. Kao, C.-L. Yao, P.-W. Chiu, C.-C. Yao, S.-C. Chen, 2,4,6-Trinitrotoluene induces apoptosis via ROS-regulated mitochondrial dysfunction and endoplasmic reticulum stress in HepG2 and Hep3B cells, Sci. Rep., 7 (2017) 8148, doi: 10.1038/ s41598-017-08308-z.
  10. A. Esteve-Núñez, A. Caballero, J.L. Ramos, Biological degradation of 2,4,6-trinitrotoluene, Microbiol. Mol. Biol. Rev., 65 (2001) 335–352.
  11. R. Johnson, P. Tratnyek, R. Miehr, R.B. Thoms, J. Bandstra, Reduction of hydraulic conductivity and reactivity in zerovalent iron columns by oxygen and TNT, Ground Water Monit. Rem., 25 (2005) 129–136.
  12. D. Kalderis, A.L. Juhasz, R. Boopathy, S. Comfort, Soils contaminated with explosives: environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report), Pure Appl. Chem., 83 (2011) 1407–1484.
  13. J. Lamba, S. Anand, J. Dutta, S. Chatterjee, S. Nagar, S. Mary Celin, P. Kumar Ravi, Study on aerobic degradation of 2,4,6-trinitrotoluene (TNT) using Pseudarthrobacter chlorophenolicus collected from the contaminated site, Environ. Monit. Assess., 193 (2021) 193, doi: 10.1007/s10661-021-08869-7.
  14. Y.Y. Eng, V.K. Sharma, A.K. Ray, Ferrate(VI): green chemistry oxidant for degradation of cationic surfactant, Chemosphere, 69 (2006) 1785–1790.
  15. E. Neyens, J. Baeyens, A review of thermal sludge pre-treatment processes to improve dewaterability, J. Hazard. Mater., 98 (2003) 51–67.
  16. C. Wu, L. Jin, P. Zhang, G. Zhang, Effects of potassium ferrate oxidation on sludge disintegration, dewaterability and anaerobic biodegradation, Int. Biodeterior. Biodegrad., 102 (2015) 137–142.
  17. J. Wu, T. Lu, J. Bi, H. Yuan, Y. Chen, A novel sewage sludge biochar and ferrate synergetic conditioning for enhancing sludge dewaterability, Chemosphere, 237 (2019) 124339, doi:10.1016/j.chemosphere.2019.07.070.
  18. Z.-W. He, W.-Z. Liu, Q. Gao, C.-C. Tang, L. Wang, Z.-C. Guo, A.-J. Zhou, A.-J. Wang, Potassium ferrate addition as an alternative pre-treatment to enhance short-chain fatty acids production from waste activated sludge, Bioresour. Technol., 247 (2018) 174–181.
  19. K. Manoli, L.M. Morrison, M.W. Sumarah, G. Nakhla, A.K. Ray, V.K. Sharma, Pharmaceuticals and pesticides in secondary effluent wastewater: identification and enhanced removal by acid-activated ferrate(VI), Water Res., 148 (2019) 272–280.
  20. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review, Chem. Eng. J, 310 (2017) 41–62.
  21. M. Moradi, F. Ghanbari, Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process: biodegradability improvement, J. Water Process Eng., 4 (2014) 67–73.
  22. M.M. Amin, F. Teimouri, Comparison of simple ozonation and direct hydrogen peroxide processes in TNT removal from aqueous solution, J. Water Supply Res. Technol. AQUA, 65 (2016) 564–569.
  23. K. Naddafi, N. Rastkari, R. Nabizadeh, R. Saeedi, M. Gholami, Removal of 2,4,6-trichlorophenol from aqueous solutions by cetylpyridinium bromide (CPB)-modified zeolite in batch and continuous systems, Desal. Water Treat., 86 (2017) 131–138.
  24. Y.-H. Huang, Y.-F. Huang, C.-I. Huang, C.-Y. Chen, Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage
    of Co2+-catalyst, J. Hazard. Mater., 170 (2009) 1110–1118.
  25. A. Akbari, M. Sadani, M.M. Amin, F. Teimouri, M. Khajeh, M. Mahdavi, M. Hadi, Managing sulfate ions produced by sulfate radical-advanced oxidation process using sulfatereducing bacteria for the subsequent biological treatment, J. Environ. Chem. Eng., 6 (2018) 5929–5937.
  26. Q. Chen, F. Ji, T. Liu, P. Yan, W. Guan, X. Xu, Synergistic effect of bifunctional Co–TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process, Chem. Eng. J., 229 (2013) 57–65.
  27. Y. Feng, D. Wu, Y. Deng, T. Zhang, K. Shih, Sulfate radicalmediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanisms, Environ. Sci. Technol., 50 (2016) 3119–3127.
  28. M. Golshan, B. Kakavandi, M. Ahmadi, M. Azizi, Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process feasibility, mechanism and pathway, J. Hazard. Mater., 359 (2018) 325–337.
  29. B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and its application in decontamination technologies, Crit. Rev. Env. Sci. Technol., 45 (2015) 1756–1800.
  30. A. Akbari, M. Sadani, A. Sedighizadeh, A. Sedghi, M. Khajeh, M. Mahmoudi, A. Bagheri, F. Teimouri, J. Behin, Reduction of dinitrotoluene by hydrated electrons generated from UV irradiation of toluene in wastewater: towards cleaner production, J. Cleaner Prod., 238 (2019) 117857, doi: 10.1016/j. jclepro.2019.117857.
  31. I. Ciabatti, F. Tognotti, L. Lombardi, Treatment and reuse of dyeing effluents by potassium ferrate, Desalination, 250 (2010) 222–228.
  32. V.K. Sharma, G.W. Luther 3rd, F.J. Millero, Mechanisms of oxidation of organosulfur compounds by ferrate(VI), Chemosphere, 82 (2011) 1083–1089.
  33. J. Saien, A.R. Soleymani, J.H. Sun, Parametric optimization of individual and hybridized AOPs of Fe2+/H2O2 and UV/S2O22− for rapid dye destruction in aqueous media, Desalination, 279 (2011) 298–305.
  34. W.H. Glaze, J.-W. Kang, D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone Sci. Eng.; J. Int. Ozone Assoc., 9 (1987) 335–352.
  35. L.A. Bernal-Martínez, C.E. Barrera-Díaz, C. Solís-Morelos, R. Natividad, Synergy of electrochemical and ozonation processes in industrial wastewater treatment, Chem. Eng. J., 165 (2010) 71–77.
  36. W. Qin, G. Fang, Y. Wang, D. Zhou, Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: key role of superoxide radicals, Chem. Eng. J., 348 (2018) 526–534.
  37. D.N. Bui, T.T. Minh, Investigation of TNT red wastewater treatment technology using the combination of advanced oxidation processes, Sci. Total Environ., 756 (2021) 143852, doi: 10.1016/j.scitotenv.2020.143852.
  38. M.E. Walsh, T.F. Jenkins, Identification of TNT Transformation Product in Soil, U.S. Army Corps of Engineers, 1992.
  39. K. Ayoub, E D. van Hullebusch, M. Cassir, A. Bermond, Application of advanced oxidation processes for TNT removal: a review, J. Hazard. Mater., 25 (2010) 10–28.
  40. M.A. Zarei, H. Tahermansouri, Y. Bayat, The oxidation of 2,4,6-trinitrotoluene with an ozone-oxygen mixture:
    a simple method for preparation of 1,3,5-trinitrobenzene, J. Chem., 2013 (2013) 958286, doi:10.1155/2013/958286.
  41. D.C. Schmelling, K.A. Gray, P.V. Kamat, Radiation-induced reactions of 2,4,6-trinitrotoluene in aqueous solution, Environ. Sci. Technol., 32 (1998) 971–974.
  42. J. Qiao, S. Luo, P. Yang, W. Jiao, Y. Liu, Degradation of nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed, J. Taiwan Inst. Chem. Eng., 99 (2019) 1–8.
  43. I.A. Bamgbose, T.A. Anderson, Assessment of three plant-based biodiesels using a Daphnia magna bioassay, Environ. Sci. Pollut. Res., 25 (2018) 4506–4515.