References
- C.S.G.P. Queirós, S. Cardoso, A. Lourenço, J. Ferreira, I. Miranda,
M.J.V. Lourenço, H. Pereira, Characterization of walnut,
almond, and pine nut shells regarding chemical composition
and extract composition, Biomass Convers. Biorefin., 10 (2020)
175–188.
- B. Zhang, P. Jin, H. Qiao, T. Hayat, A. Alsaedi, B. Ahmad, Exergy
analysis of Chinese agriculture, Ecol. Ind., 105 (2019) 279–291.
- S. Zhou, Y. Wei, B. Li, H. Wang, Cleaner recycling of iron from
waste copper slag by using walnut shell char as green reductant,
J. Cleaner Prod., 217 (2019) 423–431.
- J. Wei, G. Liang, J. Alex, T. Zhang, C. Ma, Research progress of
energy utilization of agricultural waste in China: bibliometric
analysis by citespace, Sustainability, 12 (2020) 812–834.
- K.U. Mohammad, N. Abu, Walnut shell powder as a lowcost
adsorbent for methylene blue dye: isotherm, kinetics,
thermodynamic, desorption and response surface methodology
examinations, Sci. Rep., 10 (2020) 7953, doi: 10.1038/s41598-020-64745-3.
- C. Kang, L. Zhu, Y. Wang, Y. Wang, K. Xiao, T. Tian, Adsorption
of basic dyes using walnut shell-based biochar produced by
hydrothermal carbonization, Chem. Res., 34 (2018) 622–627.
- V. Halysh, O. Sevastyanova, A.V. Riazanova, B. Pasalskiy,
T. Budnyak, M.E. Lindström, M. Kartel, Walnut shells as a
potential low-cost lignocellulosic sorbent for dyes and metal
ions, Cellulose, 25 (2018) 4729–4742.
- D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and
inorganic contaminants removal from water with biochar,
a renewable, low cost and sustainable adsorbent – a critical
review, Bioresour. Technol., 160 (2014) 191–202.
- I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei,
D.A. Giannakoudakis, A. Robalds, M. Usman,
L.B. Escudero,
Y. Zhou, J.C. Colmenares, A. Núñez-Delgado, É.C. Lima,
Agricultural biomass/waste as adsorbents for toxic metal
decontamination of aqueous solutions, J. Mol. Liq., 295 (2019)
111684, doi:10.1016/j.molliq.2019.111684.
- M.A. Khan, A.A. Alqadami, M. Otero, M.R. Siddiqui,
Z.A. Alothman, I. Alsohaimi, M. Rafatullah, A.E. Hamedelniel,
Heteroatom-doped magnetic hydrochar to remove posttransition
and transition metals from water: synthesis,
characterization, and adsorption studies, Chemosphere,
218 (2019) 1089–1099.
- H. Shang, Y. Li, J. Liu, Y. Wan, Y. Feng, Y. Yu, Preparation of
nitrogen doped magnesium oxide modified biochar and its
sorption efficiency of lead ions in aqueous solution, Bioresour.
Technol., 314 (2020) 123708, doi: 10.1016/j.biortech.2020.123708.
- Z. Fang, Y. Gao, N. Bolan, S.M. Shaheen, S. Xu, X. Wu, X. Xu,
H. Hu, J. Lin, F. Zhang, J. Li, J. Rinklebe, H. Wang, Conversion
of biological solid waste to graphene-containing biochar for
water remediation: a critical review, Chem. Eng. J., 390 (2020)
124611, doi: 10.1016/j.cej.2020.124611.
- Z. Yu, L. Zhou, Y. Huang, Z. Song, W. Qiu, Effects of a
manganese oxide-modified biochar composite on adsorption of
arsenic in red soil, J. Environ. Manage., 163 (2015) 155–162.
- Z. Ding, X. Hu, Y. Wan, S. Wang, B. Gao, Removal of lead,
copper, cadmium, zinc, and nickel from aqueous solutions by
alkali-modified biochar: batch and column tests, J. Ind. Eng.
Chem., 33 (2016) 239–245.
- S. Batool, M. Idrees, M. Ahmad, M. Ahmad, Q. Hussain,
A. Iqbal, J. Kong, Design and characterization of a biomass
template/SnO2 nanocomposite for enhanced adsorption
of 2,4-dichlorophenol, Environ. Res., 181 (2020) 108955,
doi: 10.1016/j.envres.2019.108955.
- N.S. Trivedi, R.A. Kharkar, S.A. Mandavgane,
2,4-Dichlorophenoxyacetic acid adsorption on adsorbent
prepared from groundnut shell: effect of preparation conditions
on equilibrium adsorption capacity, Arabian J. Chem., 12 (2019)
4541–4549.
- Z. Liu, Q. Qin, Z. Hu, L. Yan, U. Ieong, Y. Xu, Adsorption of
chlorophenols on polyethylene terephthalate microplastics
from aqueous environments: kinetics, mechanisms and
influencing factors, Environ. Pollut., 265 (2020) 114926,
doi: 10.1016/j.envpol.2020.114926.
- M. Czaplicka, Sources and transformations of chlorophenols
in the natural environment, Sci. Total Environ., 322 (2004)
21–39.
- P.V. Aken, V. Rob, J. Degrève, R. Dewil, A pilot-scale coupling
of ozonation and biodegradation of
2,4-dichlorophenolcontaining
wastewater: the effect of biomass acclimation
towards chlorophenol and intermediate ozonation products,
J. Cleaner Prod., 161 (2017) 1432–1441.
- N. Tong, J. Yuan, H. Xu, S. Huang, C. Sun, X. Wen, Y. Zhang,
Effects of 2,4,6-trichlorophenol on simultaneous nitrification
and denitrification: performance, possible degradation pathway
and bacterial community structure, Bioresour. Technol.,
290 (2019) 121757, doi: 10.1016/j.biortech.2019.121757.
- P.J. Dorathi, P. Kandasamy, Dechlorination of chlorophenols by
zero valent iron impregnated silica, J. Environ. Sci., 24 (2012)
765–773.
- X. Cheng, H. Guo, Y. Zhang, Y. Liu, H. Liu, Y. Yang, Oxidation of
2,4-dichlorophenol by non-radical mechanism using persulfate
activated by Fe/S modified carbon nanotubes, J. Colloid
Interface Sci., 469 (2016) 277–286.
- W. Liu, D. Ren, J. Wu, Z. Wang, S. Zhang, X. Zhang, X. Gong,
Adsorption behavior of 2,4-DCP by rice straw biochar modified
with CTAB, Environ. Technol., 42 (2020) 3797–3806.
- A. Allwar, S. Syamsurizal, Removal of 2-chlorophenol using
rice husk activated carbon prepared
by ZnCl2/H3PO4 activation,
Orient J. Chem., 33 (2017) 2386–2393.
- L. Ren, J. Zhang, Y. Li, C. Zhang, Preparation and evaluation
of cattail fiber-based activated carbon for
2,4-dichlorophenol
and 2,4,6-trichlorophenol removal, Chem. Eng. J., 168 (2011)
553–561.
- W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, Preparation of high
adsorption capacity bio-chars from waste biomass, Bioresour.
Technol., 102 (2011) 8247–8252.
- D. Kalderis, B. Kayan, S. Akay, E. Kulaksız, B. Gözmen,
Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk
biochar: process optimization and comparison with biochars
prepared from wood chips, sewage sludge and hog fuel/
demolition waste, J. Environ. Chem. Eng., 5 (2017) 2222–2231.
- Y. Wu, B. Chen, Effect of fulvic acid coating on biochar surface
structure and sorption properties towards
4-chlorophenol, Sci.
Total Environ., 691 (2019) 595–604.
- X. Song, P. Ning, C. Wang, K. Li, L. Tang, X. Sun, H. Ruan,
Research on the low temperature catalytic hydrolysis of COS
and CS2 over walnut shell biochar modified by Fe-Cu mixed
metal oxides and basic functional groups, Chem. Eng. J.,
314 (2017) 418–433.
- S. Chowdhury, P. Saha, Adsorption kinetic modeling of safranin
onto rice husk biomatrix using pseudo-first- and pseudo-second-order kinetic models: comparison of linear and nonlinear
methods, Clean-Soil, Air, Water, 39 (2011) 274–282.
- H.M. Jang, S. Yoo, Y.-K. Choi, S. Park, E. Kan, Adsorption
isotherm, kinetic modeling and mechanism of tetracycline
on Pinus taeda-derived activated biochar, Bioresour. Technol.,
259 (2018) 24–31.
- S. Azizian, S. Eris, L.D. Wilsn, Re-evaluation of the century-old
Langmuir isotherm for modeling adsorption phenomena in
solution, Chem. Phys., 513 (2018) 99–104.
- P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Fabrication of
carbon nanorods and graphene nanoribbons from a metalorganic
framework, Nat. Chem., 8 (2016) 718–724.
- A. Ghosh, Cd.A. Razzino, A. Dasgupta, K. Fujisawa,
L.H.S. Vieira, S. Subramanian, R.S. Costa, A.O. Lobo,
O.P. Ferreira, J. Robinson, M. Terrones, H. Terrones, B.C. Viana,
Structural and electrochemical properties of babassu coconut
mesocarp-generated activated carbon and few-layer graphene,
Carbon, 145 (2019) 175–186.
- A. Krzyszczak, M.P. Dybowski, B. Czech, Formation of
polycyclic aromatic hydrocarbons and their derivatives in
biochars: the effect of feedstock and pyrolysis conditions,
J. Anal. Appl. Pyrolysis, 160 (2021) 105339–105349.
- X. Zhou, L. Shi, T.B. Moghaddam, M. Chen, S. Wu, X. Yuan,
Adsorption mechanism of polycyclic aromatic hydrocarbons
using wood waste-derived biochar, J. Hazard. Mater., 425 (2022)
128003–128019.
- R.J. Evans, T.A. Milne, M.N. Soltys, Direct mass-spectrometric
studies of the pyrolysis of carbonaceous fuels: III. Primary
pyrolysis of lignin, J. Anal. Appl. Pyrolysis, 9 (1986) 207–236.
- X. Shang, L. Yang, D. Ouyang, B. Zhang, W. Zhang,
M. Gu, J. Li, M. Chen, L. Huang, L. Qian, Enhanced removal
of 1,2,4-trichlorobenzene by modified biochar supported
nanoscale zero-valent iron and palladium, Chemosphere,
249 (2020) 126518–126528.
- H.R. Dong, J.M. Deng, Y.K. Xie, C. Zhang, Z. Jiang, Y.J. Cheng,
K.J. Hou, G.M. Zeng, Stabilization of nanoscale zero-valent iron
(nZVI) with modified biochar for Cr(VI) removal from aqueous
solution, J. Hazard. Mater., 332 (2017) 79–86.
- S.M. Anisuzzaman, C.G. Joseph, Y.H. Taufiq-Yap, D. Krishnaiah,
V.V. Tay, Modification of commercial activated carbon for the
removal of 2,4-dichlorophenol from simulated wastewater,
J. King Saud Univ. Sci., 27 (2015) 318–330.
- Q.S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption
isotherm, kinetic and mechanism studies of some substituted
phenols on activated carbon fibers, Chem. Eng. J., 157 (2010)
348–356.