References

  1. C.S.G.P. Queirós, S. Cardoso, A. Lourenço, J. Ferreira, I. Miranda, M.J.V. Lourenço, H. Pereira, Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition, Biomass Convers. Biorefin., 10 (2020) 175–188.
  2. B. Zhang, P. Jin, H. Qiao, T. Hayat, A. Alsaedi, B. Ahmad, Exergy analysis of Chinese agriculture, Ecol. Ind., 105 (2019) 279–291.
  3. S. Zhou, Y. Wei, B. Li, H. Wang, Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant, J. Cleaner Prod., 217 (2019) 423–431.
  4. J. Wei, G. Liang, J. Alex, T. Zhang, C. Ma, Research progress of energy utilization of agricultural waste in China: bibliometric analysis by citespace, Sustainability, 12 (2020) 812–834.
  5. K.U. Mohammad, N. Abu, Walnut shell powder as a lowcost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations, Sci. Rep., 10 (2020) 7953, doi: 10.1038/s41598-020-64745-3.
  6. C. Kang, L. Zhu, Y. Wang, Y. Wang, K. Xiao, T. Tian, Adsorption of basic dyes using walnut shell-based biochar produced by hydrothermal carbonization, Chem. Res., 34 (2018) 622–627.
  7. V. Halysh, O. Sevastyanova, A.V. Riazanova, B. Pasalskiy, T. Budnyak, M.E. Lindström, M. Kartel, Walnut shells as a potential low-cost lignocellulosic sorbent for dyes and metal ions, Cellulose, 25 (2018) 4729–4742.
  8. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review, Bioresour. Technol., 160 (2014) 191–202.
  9. I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei, D.A. Giannakoudakis, A. Robalds, M. Usman,
    L.B. Escudero, Y. Zhou, J.C. Colmenares, A. Núñez-Delgado, É.C. Lima, Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions, J. Mol. Liq., 295 (2019) 111684, doi:10.1016/j.molliq.2019.111684.
  10. M.A. Khan, A.A. Alqadami, M. Otero, M.R. Siddiqui, Z.A. Alothman, I. Alsohaimi, M. Rafatullah, A.E. Hamedelniel, Heteroatom-doped magnetic hydrochar to remove posttransition and transition metals from water: synthesis, characterization, and adsorption studies, Chemosphere, 218 (2019) 1089–1099.
  11. H. Shang, Y. Li, J. Liu, Y. Wan, Y. Feng, Y. Yu, Preparation of nitrogen doped magnesium oxide modified biochar and its sorption efficiency of lead ions in aqueous solution, Bioresour. Technol., 314 (2020) 123708, doi: 10.1016/j.biortech.2020.123708.
  12. Z. Fang, Y. Gao, N. Bolan, S.M. Shaheen, S. Xu, X. Wu, X. Xu, H. Hu, J. Lin, F. Zhang, J. Li, J. Rinklebe, H. Wang, Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review, Chem. Eng. J., 390 (2020) 124611, doi: 10.1016/j.cej.2020.124611.
  13. Z. Yu, L. Zhou, Y. Huang, Z. Song, W. Qiu, Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil, J. Environ. Manage., 163 (2015) 155–162.
  14. Z. Ding, X. Hu, Y. Wan, S. Wang, B. Gao, Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests, J. Ind. Eng. Chem., 33 (2016) 239–245.
  15. S. Batool, M. Idrees, M. Ahmad, M. Ahmad, Q. Hussain, A. Iqbal, J. Kong, Design and characterization of a biomass template/SnO2 nanocomposite for enhanced adsorption of 2,4-dichlorophenol, Environ. Res., 181 (2020) 108955, doi: 10.1016/j.envres.2019.108955.
  16. N.S. Trivedi, R.A. Kharkar, S.A. Mandavgane, 2,4-Dichlorophenoxyacetic acid adsorption on adsorbent prepared from groundnut shell: effect of preparation conditions on equilibrium adsorption capacity, Arabian J. Chem., 12 (2019) 4541–4549.
  17. Z. Liu, Q. Qin, Z. Hu, L. Yan, U. Ieong, Y. Xu, Adsorption of chlorophenols on polyethylene terephthalate microplastics from aqueous environments: kinetics, mechanisms and influencing factors, Environ. Pollut., 265 (2020) 114926, doi: 10.1016/j.envpol.2020.114926.
  18. M. Czaplicka, Sources and transformations of chlorophenols in the natural environment, Sci. Total Environ., 322 (2004) 21–39.
  19. P.V. Aken, V. Rob, J. Degrève, R. Dewil, A pilot-scale coupling of ozonation and biodegradation of
    2,4-dichlorophenolcontaining wastewater: the effect of biomass acclimation towards chlorophenol and intermediate ozonation products, J. Cleaner Prod., 161 (2017) 1432–1441.
  20. N. Tong, J. Yuan, H. Xu, S. Huang, C. Sun, X. Wen, Y. Zhang, Effects of 2,4,6-trichlorophenol on simultaneous nitrification and denitrification: performance, possible degradation pathway and bacterial community structure, Bioresour. Technol., 290 (2019) 121757, doi: 10.1016/j.biortech.2019.121757.
  21. P.J. Dorathi, P. Kandasamy, Dechlorination of chlorophenols by zero valent iron impregnated silica, J. Environ. Sci., 24 (2012) 765–773.
  22. X. Cheng, H. Guo, Y. Zhang, Y. Liu, H. Liu, Y. Yang, Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes, J. Colloid Interface Sci., 469 (2016) 277–286.
  23. W. Liu, D. Ren, J. Wu, Z. Wang, S. Zhang, X. Zhang, X. Gong, Adsorption behavior of 2,4-DCP by rice straw biochar modified with CTAB, Environ. Technol., 42 (2020) 3797–3806.
  24. A. Allwar, S. Syamsurizal, Removal of 2-chlorophenol using rice husk activated carbon prepared
    by ZnCl2/H3PO4 activation, Orient J. Chem., 33 (2017) 2386–2393.
  25. L. Ren, J. Zhang, Y. Li, C. Zhang, Preparation and evaluation of cattail fiber-based activated carbon for
    2,4-dichlorophenol and 2,4,6-trichlorophenol removal, Chem. Eng. J., 168 (2011) 553–561.
  26. W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, Preparation of high adsorption capacity bio-chars from waste biomass, Bioresour. Technol., 102 (2011) 8247–8252.
  27. D. Kalderis, B. Kayan, S. Akay, E. Kulaksız, B. Gözmen, Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk biochar: process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/ demolition waste, J. Environ. Chem. Eng., 5 (2017) 2222–2231.
  28. Y. Wu, B. Chen, Effect of fulvic acid coating on biochar surface structure and sorption properties towards
    4-chlorophenol, Sci. Total Environ., 691 (2019) 595–604.
  29. X. Song, P. Ning, C. Wang, K. Li, L. Tang, X. Sun, H. Ruan, Research on the low temperature catalytic hydrolysis of COS and CS2 over walnut shell biochar modified by Fe-Cu mixed metal oxides and basic functional groups, Chem. Eng. J., 314 (2017) 418–433.
  30. S. Chowdhury, P. Saha, Adsorption kinetic modeling of safranin onto rice husk biomatrix using pseudo-first- and pseudo-second-order kinetic models: comparison of linear and nonlinear methods, Clean-Soil, Air, Water, 39 (2011) 274–282.
  31. H.M. Jang, S. Yoo, Y.-K. Choi, S. Park, E. Kan, Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar, Bioresour. Technol., 259 (2018) 24–31.
  32. S. Azizian, S. Eris, L.D. Wilsn, Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution, Chem. Phys., 513 (2018) 99–104.
  33. P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Fabrication of carbon nanorods and graphene nanoribbons from a metalorganic framework, Nat. Chem., 8 (2016) 718–724.
  34. A. Ghosh, Cd.A. Razzino, A. Dasgupta, K. Fujisawa, L.H.S. Vieira, S. Subramanian, R.S. Costa, A.O. Lobo,
    O.P. Ferreira, J. Robinson, M. Terrones, H. Terrones, B.C. Viana, Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene, Carbon, 145 (2019) 175–186.
  35. A. Krzyszczak, M.P. Dybowski, B. Czech, Formation of polycyclic aromatic hydrocarbons and their derivatives in biochars: the effect of feedstock and pyrolysis conditions, J. Anal. Appl. Pyrolysis, 160 (2021) 105339–105349.
  36. X. Zhou, L. Shi, T.B. Moghaddam, M. Chen, S. Wu, X. Yuan, Adsorption mechanism of polycyclic aromatic hydrocarbons using wood waste-derived biochar, J. Hazard. Mater., 425 (2022) 128003–128019.
  37. R.J. Evans, T.A. Milne, M.N. Soltys, Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels: III. Primary pyrolysis of lignin, J. Anal. Appl. Pyrolysis, 9 (1986) 207–236.
  38. X. Shang, L. Yang, D. Ouyang, B. Zhang, W. Zhang, M. Gu, J. Li, M. Chen, L. Huang, L. Qian, Enhanced removal of 1,2,4-trichlorobenzene by modified biochar supported nanoscale zero-valent iron and palladium, Chemosphere, 249 (2020) 126518–126528.
  39. H.R. Dong, J.M. Deng, Y.K. Xie, C. Zhang, Z. Jiang, Y.J. Cheng, K.J. Hou, G.M. Zeng, Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 332 (2017) 79–86.
  40. S.M. Anisuzzaman, C.G. Joseph, Y.H. Taufiq-Yap, D. Krishnaiah, V.V. Tay, Modification of commercial activated carbon for the removal of 2,4-dichlorophenol from simulated wastewater, J. King Saud Univ. Sci., 27 (2015) 318–330.
  41. Q.S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 157 (2010) 348–356.