References

  1. S. Wacławek, D. Silvestri, P. Hrabák, V.V.T. Padil, R. Torres-Mendieta, M. Wacławek, M. Černík, D.D. Dionysiou, Chemical oxidation and reduction of hexachlorocyclohexanes: a review, Water Res., 162 (2019) 302–319.
  2. C.M. Dominguez, J. Parchão, S. Rodriguez, D. Lorenzo, A. Romero, A. Santos, Kinetics of lindane dechlorination by zero-valent iron microparticles: effect of different salts and stability study, Ind. Eng. Chem. Res., 55 (2016) 12776–12785.
  3. C.M. Dominguez, A. Romero, J. Fernandez, A. Santos, In situ chemical reduction of chlorinated organic compounds from lindane production wastes by zero-valent iron microparticles, J. Water Process Eng., 26 (2018) 146–155.
  4. E. Danopoulos, K. Melissinos, G. Katsas, Serious poisoning by hexachlorocyclohexane; clinical and laboratory observations on five cases, AMA Arch. Ind. Hyg. Occup. Med., 8 (1953) 582–587.
  5. N.K. Singh, N. Chhillar, B.D. Banerjee, K. Bala, M. Basu, M. Mustafa, Organochlorine pesticide levels and risk of Alzheimer’s disease in North Indian population, Hum. Exp. Toxicol., 32 (2013) 24–30.
  6. S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.V.N. Vo, F.A. Manan, Arsenic removal technologies and future trends: a mini review, J. Cleaner Prod., 278 (2021) 123805, doi: 10.1016/j. jclepro.2020.123805.
  7. Y. Wu, C.Y. Guan, N. Griswold, L.-y. Hou, X. Fang, A. Hu, Z.-q. Hu, C.P. Yu, Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: recent advances and perspectives, J. Cleaner Prod., 277 (2020) 123478, doi: 10.1016/j.jclepro.2020.123478.
  8. D. Huang, G. Wang, Z. Shi, Z. Li, F. Kang, F. Liu, Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system, J. Cleaner Prod., 165 (2017) 667–676.
  9. R.T. Wilkin, S.D. Acree, R.R. Ross, R.W. Puls, T.R. Lee, L.L. Woods, Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater, Sci. Total Environ., 468–469 (2014) 186–194.
  10. K.S. Lin, N.V. Mdlovu, C.Y. Chen, C.L. Chiang, K. Dehvari, Degradation of TCE, PCE, and 1,2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles, J. Cleaner Prod., 175 (2018) 456–466.
  11. R. Srinivasan, G.A. Sorial, Treatment of perchlorate in drinking water: a critical review, Sep. Purif. Technol., 69 (2009) 7–21.
  12. R.J. Langdon, P.D. Yousefi, C.L. Relton, M.J. Suderman, Denitrification of secondary wastewater using sawdust, Mem. Fac. Eng. Kyushu Univ., 66 (2006) 115–128.
  13. O. Eljamal, K. Jinno, T. Hosokawa, Modeling of biologically mediated redox processes using sawdust as a matrix, Proc. Hydraul. Eng., 51 (2007) 19–24.
  14. O. Eljamal, J. Okawauchi, K. Hiramatsu, O. Eljamal, J. Okawauchi, K. Hiramatsu, Removal of phosphorus from water using marble dust as sorbent material, J. Environ. Prot. (Irvine, Calif), 3 (2012) 709–714.
  15. T. Shubair, O. Eljamal, A.M.E. Khalil, N. Matsunaga, Multilayer system of nanoscale zero-valent iron and
    nano-Fe/Cu particles for nitrate removal in porous media, Sep. Purif. Technol., 193 (2018) 242–254.
  16. J. Xiao, Z. Pang, S. Zhou, L. Chu, L. Rong, Y. Liu, J. Li, L. Tian, The mechanism of acid-washed zero-valent iron/activated carbon as permeable reactive barrier enhanced electrokinetic remediation of
    uranium-contaminated soil, Sep. Purif. Technol., 244 (2020) 116667, doi: 10.1016/j.seppur.2020.116667.
  17. H. Zhou, J. Xu, S. Lv, Z. Liu, W. Liu, Removal of cadmium in contaminated kaolin by new-style electrokinetic remediation using array electrodes coupled with permeable reactive barrier, Sep. Purif. Technol., 239 (2020) 116544, doi: 10.1016/j. seppur.2020.116544.
  18. D.W. Blowes, C.J. Ptacek, S.G. Benner, C.W.T. McRae, T.A. Bennett, R.W. Puls, Treatment of inorganic contaminants using permeable reactive barriers, J. Contam. Hydrol., 45 (2000) 123–137.
  19. T.F. Guerin, S. Horner, T. McGovern, B. Davey, An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater, Water Res., 36 (2002) 15–24.
  20. R. Thiruvenkatachari, S. Vigneswaran, R. Naidu, Permeable reactive barrier for groundwater remediation, J. Ind. Eng. Chem., 14 (2008) 145–156.
  21. L. Ferreira, E. Rosales, M.A. Sanromán, M. Pazos, Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by Pseudomonas stutzeri CECT 930 immobilized in hydrogel matrices, J. Chem. Technol. Biotechnol., 90 (2015) 500–506.
  22. Y. Liang, M. Ji, H. Zhai, R. Wang, Removal of benzo[a] pyrene from soil in a novel permeable electroactive well system: optimal integration of filtration, adsorption and bioelectrochemical degradation, Sep. Purif. Technol., 252 (2020) 117458, doi: 10.1016/j.seppur.2020.117458.
  23. I. Kalinovich, A. Rutter, J.S. Poland, G. Cairns, R.K. Rowe, Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology, Sci. Total Environ., 407 (2008) 53–66.
  24. X. Zhang, Y. Wu, P. Zhao, X. Shu, Q. Zhou, Z. Dong, Application of Fe-Cu/biochar system for chlorobenzene remediation of groundwater in inhomogeneous aquifers, Water, 10 (2017) 13, doi: 10.3390/w10010013.
  25. R.W. Puls, C.J. Paul, R.M. Powell, The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test, Appl. Geochem., 14 (1999) 989–1000.
  26. K.U. Mayer, D.W. Blowes, E.O. Frind, Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater, Water Resour. Res., 37 (2001) 3091–3103.
  27. D.H. Phillips, T. Van Nooten, L. Bastiaens, M.I. Russell, K. Dickson, S. Plant, J.M.E. Ahad, T. Newton, T. Elliot,
    R.M. Kalin, Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater, Environ. Sci. Technol., 44 (2010) 3861–3869.
  28. J. Vidal, M. Carvela, C. Saez, P. Cañizares, V. Navarro, R. Salazar, M.A. Rodrigo, Testing different strategies for the remediation of soils polluted with lindane, Chem. Eng. J., 381 (2020) 122674, doi:10.1016/j.cej.2019.122674.
  29. https://cumulis.epa.gov/supercpad/cursites/csitinfo. cfm?id=0401854
  30. I. San Román, A. Galdames, M.L.L. Alonso, L. Bartolomé, J.L.L. Vilas, R.M.M. Alonso, Effect of coating on the environmental applications of zero-valent iron nanoparticles: the lindane case, Sci. Total Environ., 565 (2016) 795–803.
  31. C.M. Dominguez, S. Rodriguez, D. Lorenzo, A. Romero, A. Santos, Degradation of hexachlorocyclohexanes (HCHs) by stable zero-valent iron (ZVI) microparticles, Water Air Soil Pollut., 227 (2016) 1–12.
  32. D.W. Elliott, H.-L. Lien, W. Zhang, Zero-valent iron nanoparticles for treatment of groundwater contaminated by hexachlorocyclohexanes, J. Environ. Qual., 37 (2008) 2192, doi: 10.2134/jeq2007.0545.
  33. D.W. Elliott, H.-L. Lien, W.-X. Zhang, Degradation of lindane by zero-valent iron nanoparticles, J. Environ. Eng., 135 (2009) 317–324.
  34. Z. Wang, P.P. Peng, W. Huang, Dechlorination of γ-hexachlorocyclohexane by zero-valent metallic iron,
    J. Hazard. Mater., 166 (2009) 992–997.
  35. AMIIGA, Pilot Action FUA Jaworzno, 2017. Available at:
    https://www.interreg-central.eu/Content.Node/AMIIGA.html
  36. G. Gzyl, A. Zanini, R. Fra˛czek, K. Kura, Contaminant source and release history identification in groundwater: a multi-step approach, J. Contam. Hydrol., 157 (2014) 59–72.
  37. J. Kováčik, V. Antoš, G. Micalizzi, S. Dresler, P. Hrabák, L. Mondello, Accumulation and toxicity of organochlorines in green microalgae, J. Hazard. Mater., 347 (2018) 168–175.
  38. C.M. Kao, S.C. Chen, J.Y. Wang, Y.L. Chen, S.Z. Lee, Remediation of PCE-contaminated aquifer by an in situ
    two-layer biobarrier: laboratory batch and column studies, Water Res., 37 (2003) 27–38.
  39. A.S. Ferguson, W.E. Huang, K.A. Lawson, R. Doherty, O. Gibert, K.W. Dickson, A.S. Whiteley, L.A. Kulakov,
    I.P. Thompson, R.M. Kalin, M.J. Larkin, Microbial analysis of soil and groundwater from a gasworks site and comparison with a sequenced biological reactive barrier remediation process, J. Appl. Microbiol., 102 (2007) 1227–1238.
  40. R.M. Powell, R.W. Puls, D.W. Blowes, J.L. Vogan, R.W. Gillham, P.D. Powell, D. Schultz, T. Sivavee, R. Landis, Permeable Reactive Barrier Technologies for Contaminant Remediation, U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-98/125 (NTIS 99-105702), 1998.
  41. Z. Shi, J.T. Nurmi, P.G. Tratnyek, Effects of nano zero-valent iron on oxidation-reduction potential, Environ. Sci. Technol., 45 (2011) 1586–1592.
  42. F.R. Boucher, G.F. Lee, Adsorption of lindane and dieldrin pesticides on unconsolidated aquifer sands, Environ. Sci. Technol., 6 (1972) 538–543.
  43. I. Maamoun, O. Eljamal, O. Falyouna, R. Eljamal, Y. Sugihara, Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater, Ecotoxicol. Environ. Saf., 200 (2020) 110773, doi:10.1016/J.ECOENV.2020.110773.
  44. S. Bae, R.N. Collins, T.D. Waite, K. Hanna, Advances in surface passivation of nanoscale zero-valent iron:
    a critical review, Environ. Sci. Technol., 52 (2018) 12010–12025.
  45. G. Straube, Microbial transformation of hexachlorocyclohexane, Zentralbl. Mikrobiol., 146 (1991) 327–338.
  46. F. Brahushi, F.O. Kengara, Y. Song, X. Jiang, J.C. Munch, F. Wang, Fate processes of chlorobenzenes in soil and potential remediation strategies: a review, Pedosphere, 27 (2017) 407–420.
  47. Y. Lu, J. Ramiro-Garcia, P. Vandermeeren, S. Herrmann, D. Cichocka, D. Springael, S. Atashgahi, H. Smidt, Dechlorination of three tetrachlorobenzene isomers by contaminated harbor sludge-derived enrichment cultures follows thermodynamically favorable reactions, Appl. Microbiol. Biotechnol., 101 (2017) 2589–2601.
  48. E. Arvin, B. Jensen, A. Gundersen, E. Mortensen, Org. Micropollut. Aquat. Environ., Proc. Eur. Supp. 6th, 1991, pp. 174–178.
  49. T.N.P. Bosma, R.A.G. te Welscher, G. Schraa, J.G.M.M. Smeenk, A.J.B. Zehnder, Microbial Aspects of the Behaviour of Chlorinated Compounds During Soil Passage, in: Org. Micropollutants Aquat. Environ., Springer, Netherlands, 1991, pp. 184–192.
  50. J.H. Choi, Y.H. Kim, S.J. Choi, Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: laboratory studies, Chemosphere, 67 (2007) 1551–1557.
  51. N. Zhang, S. Bashir, J. Qin, J. Schindelka, A. Fischer, I. Nijenhuis, H. Herrmann, L.Y. Wick, H.H. Richnow, Compound specific stable isotope analysis (CSIA) to characterize transformation mechanisms of
    α-hexachlorocyclohexane, J. Hazard. Mater., 280 (2014) 750–757.
  52. S. Lian, M. Nikolausz, I. Nijenhuis, U.N. da Rocha, B. Liu, F.B. Corrêa, J.P. Saraiva, H.H. Richnow, Biotransformation of hexachlorocyclohexanes contaminated biomass for energetic utilization demonstrated in continuous anaerobic digestion system, J. Hazard. Mater., 384 (2020) 121448,
    doi: 10.1016/J. JHAZMAT.2019.121448.