References
- S. Wacławek, D. Silvestri, P. Hrabák, V.V.T. Padil, R. Torres-Mendieta, M. Wacławek, M. Černík, D.D. Dionysiou, Chemical
oxidation and reduction of hexachlorocyclohexanes: a review,
Water Res., 162 (2019) 302–319.
- C.M. Dominguez, J. Parchão, S. Rodriguez, D. Lorenzo,
A. Romero, A. Santos, Kinetics of lindane dechlorination by
zero-valent iron microparticles: effect of different salts and
stability study, Ind. Eng. Chem. Res., 55 (2016) 12776–12785.
- C.M. Dominguez, A. Romero, J. Fernandez, A. Santos, In situ
chemical reduction of chlorinated organic compounds from
lindane production wastes by zero-valent iron microparticles,
J. Water Process Eng., 26 (2018) 146–155.
- E. Danopoulos, K. Melissinos, G. Katsas, Serious poisoning by
hexachlorocyclohexane; clinical and laboratory observations on
five cases, AMA Arch. Ind. Hyg. Occup. Med., 8 (1953) 582–587.
- N.K. Singh, N. Chhillar, B.D. Banerjee, K. Bala, M. Basu,
M. Mustafa, Organochlorine pesticide levels and risk of
Alzheimer’s disease in North Indian population, Hum. Exp.
Toxicol., 32 (2013) 24–30.
- S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.V.N. Vo,
F.A. Manan, Arsenic removal technologies and future trends: a
mini review, J. Cleaner Prod., 278 (2021) 123805, doi: 10.1016/j.
jclepro.2020.123805.
- Y. Wu, C.Y. Guan, N. Griswold, L.-y. Hou, X. Fang, A. Hu, Z.-q. Hu,
C.P. Yu, Zero-valent iron-based technologies for removal of
heavy metal(loid)s and organic pollutants from the aquatic
environment: recent advances and perspectives, J. Cleaner
Prod., 277 (2020) 123478, doi: 10.1016/j.jclepro.2020.123478.
- D. Huang, G. Wang, Z. Shi, Z. Li, F. Kang, F. Liu, Removal of
hexavalent chromium in natural groundwater using activated
carbon and cast iron combined system, J. Cleaner Prod.,
165 (2017) 667–676.
- R.T. Wilkin, S.D. Acree, R.R. Ross, R.W. Puls, T.R. Lee,
L.L. Woods, Fifteen-year assessment of a permeable reactive
barrier for treatment of chromate and trichloroethylene in
groundwater, Sci. Total Environ., 468–469 (2014) 186–194.
- K.S. Lin, N.V. Mdlovu, C.Y. Chen, C.L. Chiang, K. Dehvari,
Degradation of TCE, PCE, and 1,2–DCE DNAPLs in
contaminated groundwater using polyethylenimine-modified
zero-valent iron nanoparticles, J. Cleaner Prod., 175 (2018)
456–466.
- R. Srinivasan, G.A. Sorial, Treatment of perchlorate in drinking
water: a critical review, Sep. Purif. Technol., 69 (2009) 7–21.
- R.J. Langdon, P.D. Yousefi, C.L. Relton, M.J. Suderman,
Denitrification of secondary wastewater using sawdust, Mem.
Fac. Eng. Kyushu Univ., 66 (2006) 115–128.
- O. Eljamal, K. Jinno, T. Hosokawa, Modeling of biologically
mediated redox processes using sawdust as a matrix, Proc.
Hydraul. Eng., 51 (2007) 19–24.
- O. Eljamal, J. Okawauchi, K. Hiramatsu, O. Eljamal,
J. Okawauchi, K. Hiramatsu, Removal of phosphorus from
water using marble dust as sorbent material, J. Environ. Prot.
(Irvine, Calif), 3 (2012) 709–714.
- T. Shubair, O. Eljamal, A.M.E. Khalil, N. Matsunaga, Multilayer
system of nanoscale zero-valent iron and
nano-Fe/Cu particles
for nitrate removal in porous media, Sep. Purif. Technol.,
193 (2018) 242–254.
- J. Xiao, Z. Pang, S. Zhou, L. Chu, L. Rong, Y. Liu, J. Li, L. Tian,
The mechanism of acid-washed zero-valent iron/activated
carbon as permeable reactive barrier enhanced electrokinetic
remediation of
uranium-contaminated soil, Sep. Purif. Technol.,
244 (2020) 116667, doi: 10.1016/j.seppur.2020.116667.
- H. Zhou, J. Xu, S. Lv, Z. Liu, W. Liu, Removal of cadmium in
contaminated kaolin by new-style electrokinetic remediation
using array electrodes coupled with permeable reactive
barrier, Sep. Purif. Technol., 239 (2020) 116544, doi: 10.1016/j.
seppur.2020.116544.
- D.W. Blowes, C.J. Ptacek, S.G. Benner, C.W.T. McRae,
T.A. Bennett, R.W. Puls, Treatment of inorganic contaminants
using permeable reactive barriers, J. Contam. Hydrol., 45 (2000)
123–137.
- T.F. Guerin, S. Horner, T. McGovern, B. Davey, An application
of permeable reactive barrier technology to petroleum
hydrocarbon contaminated groundwater, Water Res., 36 (2002)
15–24.
- R. Thiruvenkatachari, S. Vigneswaran, R. Naidu, Permeable
reactive barrier for groundwater remediation, J. Ind. Eng.
Chem., 14 (2008) 145–156.
- L. Ferreira, E. Rosales, M.A. Sanromán, M. Pazos, Preliminary
testing and design of permeable bioreactive barrier for
phenanthrene degradation by Pseudomonas stutzeri CECT
930 immobilized in hydrogel matrices, J. Chem. Technol.
Biotechnol., 90 (2015) 500–506.
- Y. Liang, M. Ji, H. Zhai, R. Wang, Removal of benzo[a]
pyrene from soil in a novel permeable electroactive well
system: optimal integration of filtration, adsorption and
bioelectrochemical degradation, Sep. Purif. Technol., 252 (2020)
117458, doi: 10.1016/j.seppur.2020.117458.
- I. Kalinovich, A. Rutter, J.S. Poland, G. Cairns, R.K. Rowe,
Remediation of PCB contaminated soils in the Canadian Arctic:
excavation and surface PRB technology, Sci. Total Environ.,
407 (2008) 53–66.
- X. Zhang, Y. Wu, P. Zhao, X. Shu, Q. Zhou, Z. Dong, Application
of Fe-Cu/biochar system for chlorobenzene remediation of
groundwater in inhomogeneous aquifers, Water, 10 (2017) 13,
doi: 10.3390/w10010013.
- R.W. Puls, C.J. Paul, R.M. Powell, The application of in situ
permeable reactive (zero-valent iron) barrier technology for the
remediation of chromate-contaminated groundwater: a field
test, Appl. Geochem., 14 (1999) 989–1000.
- K.U. Mayer, D.W. Blowes, E.O. Frind, Reactive transport
modeling of an in situ reactive barrier for the treatment of
hexavalent chromium and trichloroethylene in groundwater,
Water Resour. Res., 37 (2001) 3091–3103.
- D.H. Phillips, T. Van Nooten, L. Bastiaens, M.I. Russell,
K. Dickson, S. Plant, J.M.E. Ahad, T. Newton, T. Elliot,
R.M. Kalin,
Ten year performance evaluation of a field-scale zero-valent iron
permeable reactive barrier installed to remediate trichloroethene
contaminated groundwater, Environ. Sci. Technol., 44 (2010)
3861–3869.
- J. Vidal, M. Carvela, C. Saez, P. Cañizares, V. Navarro, R. Salazar,
M.A. Rodrigo, Testing different strategies for the remediation of
soils polluted with lindane, Chem. Eng. J., 381 (2020) 122674,
doi:10.1016/j.cej.2019.122674.
- https://cumulis.epa.gov/supercpad/cursites/csitinfo.
cfm?id=0401854
- I. San Román, A. Galdames, M.L.L. Alonso, L. Bartolomé,
J.L.L. Vilas, R.M.M. Alonso, Effect of coating on the environmental
applications of zero-valent iron nanoparticles: the
lindane case, Sci. Total Environ., 565 (2016) 795–803.
- C.M. Dominguez, S. Rodriguez, D. Lorenzo, A. Romero,
A. Santos, Degradation of hexachlorocyclohexanes (HCHs)
by stable zero-valent iron (ZVI) microparticles, Water Air Soil
Pollut., 227 (2016) 1–12.
- D.W. Elliott, H.-L. Lien, W. Zhang, Zero-valent iron
nanoparticles for treatment of groundwater contaminated
by hexachlorocyclohexanes, J. Environ. Qual., 37 (2008) 2192,
doi: 10.2134/jeq2007.0545.
- D.W. Elliott, H.-L. Lien, W.-X. Zhang, Degradation of lindane
by zero-valent iron nanoparticles, J. Environ. Eng., 135 (2009)
317–324.
- Z. Wang, P.P. Peng, W. Huang, Dechlorination of
γ-hexachlorocyclohexane by zero-valent metallic iron,
J.
Hazard. Mater., 166 (2009) 992–997.
- AMIIGA, Pilot Action FUA Jaworzno, 2017. Available at:
https://www.interreg-central.eu/Content.Node/AMIIGA.html
- G. Gzyl, A. Zanini, R. Fra˛czek, K. Kura, Contaminant source
and release history identification in groundwater: a multi-step
approach, J. Contam. Hydrol., 157 (2014) 59–72.
- J. Kováčik, V. Antoš, G. Micalizzi, S. Dresler, P. Hrabák,
L. Mondello, Accumulation and toxicity of organochlorines in
green microalgae, J. Hazard. Mater., 347 (2018) 168–175.
- C.M. Kao, S.C. Chen, J.Y. Wang, Y.L. Chen, S.Z. Lee, Remediation
of PCE-contaminated aquifer by an in situ
two-layer biobarrier:
laboratory batch and column studies, Water Res., 37 (2003)
27–38.
- A.S. Ferguson, W.E. Huang, K.A. Lawson, R. Doherty, O. Gibert,
K.W. Dickson, A.S. Whiteley, L.A. Kulakov,
I.P. Thompson,
R.M. Kalin, M.J. Larkin, Microbial analysis of soil and
groundwater from a gasworks site and comparison with a
sequenced biological reactive barrier remediation process,
J. Appl. Microbiol., 102 (2007) 1227–1238.
- R.M. Powell, R.W. Puls, D.W. Blowes, J.L. Vogan, R.W. Gillham,
P.D. Powell, D. Schultz, T. Sivavee, R. Landis, Permeable
Reactive Barrier Technologies for Contaminant Remediation,
U.S. Environmental Protection Agency, Washington, D.C.,
EPA/600/R-98/125 (NTIS 99-105702), 1998.
- Z. Shi, J.T. Nurmi, P.G. Tratnyek, Effects of nano zero-valent
iron on oxidation-reduction potential, Environ. Sci. Technol.,
45 (2011) 1586–1592.
- F.R. Boucher, G.F. Lee, Adsorption of lindane and dieldrin
pesticides on unconsolidated aquifer sands, Environ. Sci.
Technol., 6 (1972) 538–543.
- I. Maamoun, O. Eljamal, O. Falyouna, R. Eljamal, Y. Sugihara,
Multi-objective optimization of permeable reactive barrier design
for Cr(VI) removal from groundwater, Ecotoxicol. Environ. Saf.,
200 (2020) 110773, doi:10.1016/J.ECOENV.2020.110773.
- S. Bae, R.N. Collins, T.D. Waite, K. Hanna, Advances in surface
passivation of nanoscale zero-valent iron:
a critical review,
Environ. Sci. Technol., 52 (2018) 12010–12025.
- G. Straube, Microbial transformation of hexachlorocyclohexane,
Zentralbl. Mikrobiol., 146 (1991) 327–338.
- F. Brahushi, F.O. Kengara, Y. Song, X. Jiang, J.C. Munch,
F. Wang, Fate processes of chlorobenzenes in soil and potential
remediation strategies: a review, Pedosphere, 27 (2017) 407–420.
- Y. Lu, J. Ramiro-Garcia, P. Vandermeeren, S. Herrmann,
D. Cichocka, D. Springael, S. Atashgahi, H. Smidt, Dechlorination
of three tetrachlorobenzene isomers by contaminated harbor
sludge-derived enrichment cultures follows thermodynamically
favorable reactions, Appl. Microbiol. Biotechnol., 101 (2017)
2589–2601.
- E. Arvin, B. Jensen, A. Gundersen, E. Mortensen, Org.
Micropollut. Aquat. Environ., Proc. Eur. Supp. 6th, 1991,
pp. 174–178.
- T.N.P. Bosma, R.A.G. te Welscher, G. Schraa,
J.G.M.M. Smeenk, A.J.B. Zehnder, Microbial Aspects of the
Behaviour of Chlorinated Compounds During Soil Passage, in:
Org. Micropollutants Aquat. Environ., Springer, Netherlands,
1991, pp. 184–192.
- J.H. Choi, Y.H. Kim, S.J. Choi, Reductive dechlorination and
biodegradation of 2,4,6-trichlorophenol using sequential
permeable reactive barriers: laboratory studies, Chemosphere,
67 (2007) 1551–1557.
- N. Zhang, S. Bashir, J. Qin, J. Schindelka, A. Fischer, I. Nijenhuis,
H. Herrmann, L.Y. Wick, H.H. Richnow, Compound specific
stable isotope analysis (CSIA) to characterize transformation
mechanisms of
α-hexachlorocyclohexane, J. Hazard. Mater.,
280 (2014) 750–757.
- S. Lian, M. Nikolausz, I. Nijenhuis, U.N. da Rocha, B. Liu,
F.B. Corrêa, J.P. Saraiva, H.H. Richnow, Biotransformation of
hexachlorocyclohexanes contaminated biomass for energetic
utilization demonstrated in continuous anaerobic digestion
system, J. Hazard. Mater., 384 (2020) 121448,
doi: 10.1016/J.
JHAZMAT.2019.121448.