References
- A. Yazdanbakhsh, M. Leili, M. Rezazadeh Azari,
M. Masoudinejad, M. Majlesi, Chloroform concentration in
drinking water of Tehran, 2009, J. Mazandaran Univ. Med. Sci.,
24 (2014) 102–113.
- A. Ahamad, S. Madhav, A.K. Singh, A. Kumar, P. Singh, Types
of Water Pollutants: Conventional and Emerging, D. Pooja,
P. Kumar, P. Singh, S. Patil, Eds., Sensors in Water Pollutants
Monitoring: Role of Material, Advanced Functional Materials
and Sensors, Springer, Singapore, 2020, pp. 21–41.
- S. Anand, B. Philip, H. Mehendale, Chlorination By-products,
2014.
- S. Tsitsifli, V. Kanakoudis, Disinfection impacts to drinking
water safety—a review, Proceedings, 2 (2018) 603, doi: 10.3390/
proceedings2110603.
- A. Kwarciak-Kozłowska, Chapter 1 – Methods Used for the
Removal of Disinfection By-products from Water, M.N. Vara
Prasad, Ed., Disinfection By-products in Drinking Water,
Elsevier, 2020, pp. 1–21.
- A. Nasiri, N. Jaafarzadeh, T. Tabatabaie, F. Amiri, A. Pazira,
Trihalomethane formation potential in rural drinking water:
a case study project of Seven Villages - Marvdasht Fars,
J. Environ. Treat. Tech., 8 (2020) 107–111.
- M. Saidan, K. Rawajfeh, M. Fayyad, Investigation of factors
affecting THMs formation in drinking water, Am. J. Environ.
Eng., 3 (2013) 207–212.
- K.P. Singh, P. Rai, P. Pandey, S. Sinha, Modeling and
optimization of trihalomethanes formation potential of surface
water (a drinking water source) using Box–Behnken design,
Environ. Sci. Pollut. Res., 19 (2012) 113–127.
- N.I. Hasan, H.F. Makki, Disinfection by-product removal
by activated carbon-using batch mode, IOP Conf. Ser.: Earth
Environ. Sci., 790 (2021) 012035.
- H. MacKeown, J.A. Gyamfi, M. Delaporte, K.V.K.M. Schoutteten,
L. Verdickt, B. Ouddane, J. Criquet, Removal of disinfection
by-product precursors by ion exchange resins, J. Environ.
Chem. Eng., 9 (2021) 104602, doi:10.1016/j.jece.2020.104602.
- P. Maćczak, H. Kaczmarek, M. Ziegler-Borowska, Recent
achievements in polymer bio-based flocculants for water
treatment, Materials (Basel), 13 (2020) 3951, doi: 10.3390/ma13183951.
- M.C. Mbaeze, V. Agbazue, N. Orjioke, Comparative assessment
of performance of aluminium sulphate (alum) and ferrous
sulphate as coagulants in water treatment, Mod. Chem.,
5 (2017) 1–14.
- S.M. Bachand, T.E.C. Kraus, D. Stern, Y.L. Liang, W.R. Horwath,
P.A.M. Bachand, Aluminum- and iron-based coagulation
for in-situ removal of dissolved organic carbon, disinfection
by-products, mercury and other constituents from agricultural
drain water, Ecol. Eng., 134 (2019) 26–38.
- D. Ghernaout, N. Elboughdiri, Disinfection by-products:
presence and elimination in drinking water, Open Access
Library J., 7 (2020) 1–27.
- Q. Lin, F. Dong, Y. Miao, C. Li, W. Fei, Removal of disinfection
by‐products and their precursors during drinking water
treatment processes, Water Environ. Res., 92 (2020) 698–705.
- K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of
the photocatalytic and antibacterial activities of ZnO, J. Alloys
Compd., 727 (2017) 792–820.
- M. Adeel, M. Saeed, I. Khan, M. Muneer, N. Akram, Synthesis
and characterization of Co–ZnO and evaluation of its
photocatalytic activity for photodegradation of methyl orange,
ACS Omega, 6 (2021) 1426–1435.
- R. Ameta, S.C. Ameta, Photocatalysis: Principles and
Applications, CRC Press, 2016.
- O. Długosz, K. Szostak, M. Banach, Photocatalytic properties
of zirconium oxide–zinc oxide nanoparticles synthesised using
microwave irradiation, Appl. Nanosci., 10 (2020) 941–954.
- C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO
nanoparticles as solar photocatalysts: synthesis, mechanisms
and applications, Renewable Sustainable Energy Rev., 81 (2018)
536–551.
- X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst
for the efficient and rapid photocatalytic degradation of azo
dyes, Nanoscale Res. Lett., 12 (2017) 1–10.
- B. Shahmoradi, K. Namratha, K. Byrappa, K. Soga, S. Ananda,
R. Somashekar, Enhancement of the photocatalytic activity of
modified ZnO nanoparticles with manganese additive, Res.
Chem. Intermed., 37 (2011) 329–340.
- N. Clament Sagaya Selvam, J.J. Vijaya, L.J. Kennedy, Effects
of morphology and Zr doping on structural, optical, and
photocatalytic properties of ZnO nanostructures, Ind. Eng.
Chem. Res., 51 (2012) 16333–16345.
- A.T. Oluwabi, A.O. Juma, I.O. Acik, A. Mere, M. Krunks, Effect
of Zr doping on the structural and electrical properties of spray
deposited TiO2 thin films, Proc. Estonian Acad. Sci., 67 (2018)
147–157.
- G. Kale, S. Arbuj, U. Kawade, S. Kadam, L. Nikam, B. Kale,
Paper templated synthesis of nanostructured Cu–ZnO and its
enhanced photocatalytic activity under sunlight, J. Mater. Sci. -
Mater. Electron., 30 (2019) 7031–7042.
- D.D. Zhang, R.L. Qiu, S.Z. Wang, Visible light induced
photocatalytic degradation of Br-trihalomethanes over polymermodified
TiO2, Adv. Mater. Res., 726–731 (2013) 2372–2375.
- A.R. Abhijith, A.K. Srivastava, A. Srivastava, Synthesis and
characterization of magnesium doped ZnO using chemical
route, J. Phys. Conf. Ser., 1531 (2020) 012005.
- T. Chitradevi, A.J. Lenus, N.V. Jaya, Structure, morphology and
luminescence properties of sol-gel method synthesized pure
and Ag-doped ZnO nanoparticles, Mater. Res. Express, 7 (2019)
015011.
- P. Raizada, A. Sudhaik, P. Singh, Photocatalytic water
decontamination using graphene and ZnO coupled
photocatalysts: a review, Mater. Sci. Energy Technol., 2 (2019)
509–525.
- A.C. Mohan, B. Renjanadevi, Preparation of zinc oxide
nanoparticles and its characterization using scanning electron
microscopy (SEM) and X-ray diffraction (XRD), Procedia
Technol., 24 (2016) 761–766.
- M.C. Uribe-López, M.C. Hidalgo-López, R. López-González,
D.M. Frías-Márquezc, G. Núñez-Nogueiraa,
D. Hernández-Castilloc, M.A. Alvarez-Lemus, Photocatalytic activity of ZnO
nanoparticles and the role of the synthesis method on their
physical and chemical properties, J. Photochem. Photobiol., A,
404 (2021) 112866, doi: 10.1016/j.jphotochem.2020.112866.
- B.J. Warner, S.C. Cheng, J.M. Fenke, C.S. Friedman, S. Mitrosky,
S.D. Snyder, C.R. McMilian, EPA Method Study 23B,
Method 501.2, Trihalomethanes by Liquid/Liquid Extraction,
Environmental Monitoring and Support Laboratory, Cincinnati
OH 45268, 1986.
- A. Precious Ayanwale, S.N.Y. Reyes-López, ZrO2–ZnO
nanoparticles as antibacterial agents, ACS Omega, 4 (2019)
19216–19224.
- R. Rajendran, A. Mani, Photocatalytic, antibacterial and
anticancer activity of silver-doped zinc oxide nanoparticles,
J. Saudi Chem. Soc., 24 (2020) 1010–1024.
- N.M. Shamhari, B. Siong-Wee, S.F. Chin, K.Y. Kok, Synthesis
and characterization of zinc oxide nanoparticles with small
particle size distribution, Acta Chim. Slov., 65 (2018) 578–585.
- F.K. Konan, B. Hartiti, A. Batan, B. Aka, X-ray diffraction,
XPS, and Raman spectroscopy of coated ZnO:Al
(1–7 at%)
nanoparticles, e-J. Surf. Sci. Nanotechnol., 17 (2019) 163–168.
- T. Suwannaruang, J.P. Hildebrand, D.H. Taffa, M. Wark,
K. Kamonsuangkasem, P. Chirawatkul, K. Wantala, Visible
light-induced degradation of antibiotic ciprofloxacin over
Fe–N–TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture, J. Photochem. Photobiol., A,
391 (2020) 112371, doi:10.1016/j.jphotochem.2020.112371.
- S. Han, D. Zhao, T. Otroshchenko, H. Lund, U. Bentrup,
V.A. Kondratenko, N. Rockstroh, S. Bartling,
D.E. Doronkin,
J.D. Grunwaldt, U. Rodemerck, D. Linke, M. Gao, G. Jiang,
E.V. Kondratenko, Elucidating the nature of active sites
and fundamentals for their creation in Zn-containing ZrO2–based catalysts for nonoxidative propane dehydrogenation,
ACS Catal., 10 (2020) 8933–8949.
- M. Ismail, M.K. Rahmani, S.A. Khan, J. Choi, F. Hussain,
Z. Batool, A.M. Rana, J. Lee, H. Cho, S. Kim, Effects of Gibbs
free energy difference and oxygen vacancies distribution in a
bilayer ZnO/ZrO2 structure for applications to bipolar resistive
switching, Appl. Surf. Sci., 498 (2019) 143833,
doi: 10.1016/j.
apsusc.2019.143833.
- J. Winiarski, W. Tylus, K. Winiarska, I. Szczygieł, B. Szczygieł,
XPS and FT-IR characterization of selected synthetic
corrosion products of zinc expected in neutral environment
containing chloride ions, J. Spectrosc., 2018 (2018) 2079278,
doi: 10.1155/2018/2079278.
- S. Alamdari, M. Sasani Ghamsari, C. Lee, W. Han, H.-H. Park,
M. Jafar Tafreshi, H. Afarideh, M.H. Majles Ara, Preparation
and characterization of zinc oxide nanoparticles using
leaf extract of Sambucus ebulus, Appl. Sci., 10 (2020) 3620,
doi: 10.3390/app10103620.
- O.V. Ovchinnikov, A.V. Evtukhova, T.S. Kondratenko,
M.S. Smirnov, V.Y. Khokhlov, O.V. Erina, Manifestation of
intermolecular interactions in FTIR spectra of methylene blue
molecules, Vib. Spectrosc., 86 (2016) 181–189.
- S. Bhattacharjee, DLS and zeta potential–what they are and
what they are not?, J. Control Release, 235 (2016) 337–351.
- Z. Vasiljevic, M.P. Dojcinovic, J.D. Vujancevic, I. Jankovic-Castvan, M. Ognjanovic, N.B. Tadic, S. Stojadinovic,
G.O. Brankovic, M.V. Nikolic, Photocatalytic degradation of
methylene blue under natural sunlight using iron titanate
nanoparticles prepared by a modified sol–gel method, R. Soc.
Open Sci., 7 (2020) 200708, doi:10.1098/rsos.200708.
- M.M. Kondo, W.F. Jardim, Photodegradation of chloroform and
urea using Ag-loaded titanium dioxide as catalyst, Water Res.,
25 (1991) 823–827.
- X. Chang, X. Yao, N. Ding, X. Yin, Q. Zheng, S. Lu, D. Shuai,
Y. Sun, Photocatalytic degradation of trihalomethanes and
haloacetonitriles on graphitic carbon nitride under visible light
irradiation, Sci. Total Environ., 682 (2019) 200–207.
- S. Yakout, Removal of trihalomethanes from aqueous solution
through adsorption and photodegradation, Adsorpt. Sci.
Technol., 28 (2010) 601–610.
- C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photolysis of
chloroform and other organic molecules in aqueous titanium
dioxide suspensions, Environ. Sci. Technol., 25 (1991) 494–500.
- K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of
zinc oxide based photocatalyst in water treatment technology:
a review, Water Res., 88 (2016) 428–448.