References

  1. A. Yazdanbakhsh, M. Leili, M. Rezazadeh Azari, M. Masoudinejad, M. Majlesi, Chloroform concentration in drinking water of Tehran, 2009, J. Mazandaran Univ. Med. Sci., 24 (2014) 102–113.
  2. A. Ahamad, S. Madhav, A.K. Singh, A. Kumar, P. Singh, Types of Water Pollutants: Conventional and Emerging, D. Pooja, P. Kumar, P. Singh, S. Patil, Eds., Sensors in Water Pollutants Monitoring: Role of Material, Advanced Functional Materials and Sensors, Springer, Singapore, 2020, pp. 21–41.
  3. S. Anand, B. Philip, H. Mehendale, Chlorination By-products, 2014.
  4. S. Tsitsifli, V. Kanakoudis, Disinfection impacts to drinking water safety—a review, Proceedings, 2 (2018) 603, doi: 10.3390/ proceedings2110603.
  5. A. Kwarciak-Kozłowska, Chapter 1 – Methods Used for the Removal of Disinfection By-products from Water, M.N. Vara Prasad, Ed., Disinfection By-products in Drinking Water, Elsevier, 2020, pp. 1–21.
  6. A. Nasiri, N. Jaafarzadeh, T. Tabatabaie, F. Amiri, A. Pazira, Trihalomethane formation potential in rural drinking water: a case study project of Seven Villages - Marvdasht Fars, J. Environ. Treat. Tech., 8 (2020) 107–111.
  7. M. Saidan, K. Rawajfeh, M. Fayyad, Investigation of factors affecting THMs formation in drinking water, Am. J. Environ. Eng., 3 (2013) 207–212.
  8. K.P. Singh, P. Rai, P. Pandey, S. Sinha, Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) using Box–Behnken design, Environ. Sci. Pollut. Res., 19 (2012) 113–127.
  9. N.I. Hasan, H.F. Makki, Disinfection by-product removal by activated carbon-using batch mode, IOP Conf. Ser.: Earth Environ. Sci., 790 (2021) 012035.
  10. H. MacKeown, J.A. Gyamfi, M. Delaporte, K.V.K.M. Schoutteten, L. Verdickt, B. Ouddane, J. Criquet, Removal of disinfection by-product precursors by ion exchange resins, J. Environ. Chem. Eng., 9 (2021) 104602, doi:10.1016/j.jece.2020.104602.
  11. P. Maćczak, H. Kaczmarek, M. Ziegler-Borowska, Recent achievements in polymer bio-based flocculants for water treatment, Materials (Basel), 13 (2020) 3951, doi: 10.3390/ma13183951.
  12. M.C. Mbaeze, V. Agbazue, N. Orjioke, Comparative assessment of performance of aluminium sulphate (alum) and ferrous sulphate as coagulants in water treatment, Mod. Chem., 5 (2017) 1–14.
  13. S.M. Bachand, T.E.C. Kraus, D. Stern, Y.L. Liang, W.R. Horwath, P.A.M. Bachand, Aluminum- and iron-based coagulation for in-situ removal of dissolved organic carbon, disinfection by-products, mercury and other constituents from agricultural drain water, Ecol. Eng., 134 (2019) 26–38.
  14. D. Ghernaout, N. Elboughdiri, Disinfection by-products: presence and elimination in drinking water, Open Access Library J., 7 (2020) 1–27.
  15. Q. Lin, F. Dong, Y. Miao, C. Li, W. Fei, Removal of disinfection by‐products and their precursors during drinking water treatment processes, Water Environ. Res., 92 (2020) 698–705.
  16. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727 (2017) 792–820.
  17. M. Adeel, M. Saeed, I. Khan, M. Muneer, N. Akram, Synthesis and characterization of Co–ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange, ACS Omega, 6 (2021) 1426–1435.
  18. R. Ameta, S.C. Ameta, Photocatalysis: Principles and Applications, CRC Press, 2016.
  19. O. Długosz, K. Szostak, M. Banach, Photocatalytic properties of zirconium oxide–zinc oxide nanoparticles synthesised using microwave irradiation, Appl. Nanosci., 10 (2020) 941–954.
  20. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications, Renewable Sustainable Energy Rev., 81 (2018) 536–551.
  21. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes, Nanoscale Res. Lett., 12 (2017) 1–10.
  22. B. Shahmoradi, K. Namratha, K. Byrappa, K. Soga, S. Ananda, R. Somashekar, Enhancement of the photocatalytic activity of modified ZnO nanoparticles with manganese additive, Res. Chem. Intermed., 37 (2011) 329–340.
  23. N. Clament Sagaya Selvam, J.J. Vijaya, L.J. Kennedy, Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures, Ind. Eng. Chem. Res., 51 (2012) 16333–16345.
  24. A.T. Oluwabi, A.O. Juma, I.O. Acik, A. Mere, M. Krunks, Effect of Zr doping on the structural and electrical properties of spray deposited TiO2 thin films, Proc. Estonian Acad. Sci., 67 (2018) 147–157.
  25. G. Kale, S. Arbuj, U. Kawade, S. Kadam, L. Nikam, B. Kale, Paper templated synthesis of nanostructured Cu–ZnO and its enhanced photocatalytic activity under sunlight, J. Mater. Sci. - Mater. Electron., 30 (2019) 7031–7042.
  26. D.D. Zhang, R.L. Qiu, S.Z. Wang, Visible light induced photocatalytic degradation of Br-trihalomethanes over polymermodified TiO2, Adv. Mater. Res., 726–731 (2013) 2372–2375.
  27. A.R. Abhijith, A.K. Srivastava, A. Srivastava, Synthesis and characterization of magnesium doped ZnO using chemical route, J. Phys. Conf. Ser., 1531 (2020) 012005.
  28. T. Chitradevi, A.J. Lenus, N.V. Jaya, Structure, morphology and luminescence properties of sol-gel method synthesized pure and Ag-doped ZnO nanoparticles, Mater. Res. Express, 7 (2019) 015011.
  29. P. Raizada, A. Sudhaik, P. Singh, Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review, Mater. Sci. Energy Technol., 2 (2019) 509–525.
  30. A.C. Mohan, B. Renjanadevi, Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD), Procedia Technol., 24 (2016) 761–766.
  31. M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquezc, G. Núñez-Nogueiraa,
    D. Hernández-Castilloc, M.A. Alvarez-Lemus, Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties, J. Photochem. Photobiol., A, 404 (2021) 112866, doi: 10.1016/j.jphotochem.2020.112866.
  32. B.J. Warner, S.C. Cheng, J.M. Fenke, C.S. Friedman, S. Mitrosky, S.D. Snyder, C.R. McMilian, EPA Method Study 23B, Method 501.2, Trihalomethanes by Liquid/Liquid Extraction, Environmental Monitoring and Support Laboratory, Cincinnati OH 45268, 1986.
  33. A. Precious Ayanwale, S.N.Y. Reyes-López, ZrO2–ZnO nanoparticles as antibacterial agents, ACS Omega, 4 (2019) 19216–19224.
  34. R. Rajendran, A. Mani, Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles, J. Saudi Chem. Soc., 24 (2020) 1010–1024.
  35. N.M. Shamhari, B. Siong-Wee, S.F. Chin, K.Y. Kok, Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution, Acta Chim. Slov., 65 (2018) 578–585.
  36. F.K. Konan, B. Hartiti, A. Batan, B. Aka, X-ray diffraction, XPS, and Raman spectroscopy of coated ZnO:Al
    (1–7 at%) nanoparticles, e-J. Surf. Sci. Nanotechnol., 17 (2019) 163–168.
  37. T. Suwannaruang, J.P. Hildebrand, D.H. Taffa, M. Wark, K. Kamonsuangkasem, P. Chirawatkul, K. Wantala, Visible light-induced degradation of antibiotic ciprofloxacin over Fe–N–TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture, J. Photochem. Photobiol., A, 391 (2020) 112371, doi:10.1016/j.jphotochem.2020.112371.
  38. S. Han, D. Zhao, T. Otroshchenko, H. Lund, U. Bentrup, V.A. Kondratenko, N. Rockstroh, S. Bartling,
    D.E. Doronkin, J.D. Grunwaldt, U. Rodemerck, D. Linke, M. Gao, G. Jiang, E.V. Kondratenko, Elucidating the nature of active sites and fundamentals for their creation in Zn-containing ZrO2–based catalysts for nonoxidative propane dehydrogenation, ACS Catal., 10 (2020) 8933–8949.
  39. M. Ismail, M.K. Rahmani, S.A. Khan, J. Choi, F. Hussain, Z. Batool, A.M. Rana, J. Lee, H. Cho, S. Kim, Effects of Gibbs free energy difference and oxygen vacancies distribution in a bilayer ZnO/ZrO2 structure for applications to bipolar resistive switching, Appl. Surf. Sci., 498 (2019) 143833,
    doi: 10.1016/j. apsusc.2019.143833.
  40. J. Winiarski, W. Tylus, K. Winiarska, I. Szczygieł, B. Szczygieł, XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions, J. Spectrosc., 2018 (2018) 2079278, doi: 10.1155/2018/2079278.
  41. S. Alamdari, M. Sasani Ghamsari, C. Lee, W. Han, H.-H. Park, M. Jafar Tafreshi, H. Afarideh, M.H. Majles Ara, Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus, Appl. Sci., 10 (2020) 3620, doi: 10.3390/app10103620.
  42. O.V. Ovchinnikov, A.V. Evtukhova, T.S. Kondratenko, M.S. Smirnov, V.Y. Khokhlov, O.V. Erina, Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules, Vib. Spectrosc., 86 (2016) 181–189.
  43. S. Bhattacharjee, DLS and zeta potential–what they are and what they are not?, J. Control Release, 235 (2016) 337–351.
  44. Z. Vasiljevic, M.P. Dojcinovic, J.D. Vujancevic, I. Jankovic-Castvan, M. Ognjanovic, N.B. Tadic, S. Stojadinovic,
    G.O. Brankovic, M.V. Nikolic, Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method, R. Soc. Open Sci., 7 (2020) 200708, doi:10.1098/rsos.200708.
  45. M.M. Kondo, W.F. Jardim, Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst, Water Res., 25 (1991) 823–827.
  46. X. Chang, X. Yao, N. Ding, X. Yin, Q. Zheng, S. Lu, D. Shuai, Y. Sun, Photocatalytic degradation of trihalomethanes and haloacetonitriles on graphitic carbon nitride under visible light irradiation, Sci. Total Environ., 682 (2019) 200–207.
  47. S. Yakout, Removal of trihalomethanes from aqueous solution through adsorption and photodegradation, Adsorpt. Sci. Technol., 28 (2010) 601–610.
  48. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions, Environ. Sci. Technol., 25 (1991) 494–500.
  49. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88 (2016) 428–448.