References

  1. S. Mandal, A. Kunhikrishnan, N.S. Bolan, H. Wijesekara, R. Naidu, Chapter 4 – Application of Biochar Produced From Biowaste Materials for Environmental Protection and Sustainable Agriculture Production,
    M.N.V. Prasad, K. Shih, Eds., Environmental Materials and Waste, Academic Press, London, 2016, pp. 73–89.
  2. J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6 (2020) e04691, doi: 10.1016/j.heliyon.2020.e04691.
  3. V. Masindi, K.L. Muedi, Environmental Contamination by Heavy Metals, Heavy Metals, H. El-Din, M. Saleh,
    R.F. Aglan, IntechOpen, 2018, doi: 10.5772/intechopen.76082. Available at: https://www.intechopen.com/chapters/60680
  4. A.R. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation, Int. Sch. Res. Network ISRN Ecol., 2011 (2011) 402647, 20 pages, doi:10.5402/2011/402647.
  5. K. Hunger, Industrial Dyes: Chemistry, Properties, Applications, Wiley-VCH: Verlag GmbH & Co. KGaA, Weinheim, 2003.
  6. B. Senthil Rathi, P. Senthil Kumar, Application of adsorption process for effective removal of emerging contaminants from water and wastewater, Environ. Pollut., 280 (2021) 116995, doi:10.1016/j.envpol.2021.116995.
  7. C. Tien, Introduction to Adsorption: Basics, Analysis, and Applications, 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, Elsevier, United States, 2019.
  8. Z. Bouberka, A. Khenifi, N. Benderdouche, Z. Derriche, Removal of Supranol yellow 4GL by adsorption onto Cr-intercalated montmorillonite, J. Hazard. Mater. B, 133 (2006) 154–161.
  9. F. Nemchi, B. Bestani, N. Benderdouche, M. Belhakem, L. Charles de Minorval, Adsorption of Supranol yellow 4GL from aqueous solution onto activated carbons prepared from seawater algae, Adsorpt. Sci. Technol., 30 (2012) 81–95.
  10. N. Benderdouche, B. Bestani, B. Benstaali, Z. Derriche, Enhancement of the adsorptive properties of a desert Salsola vermiculata species, Adsorpt. Sci. Technol., 21 (2003) 739–750.
  11. F. Nemchi, B. Bestani, N. Benderdouche, M. Belhakem, L. Duclaux, Enhancement of Ni2+ removal capacity of activated carbons obtained from Mediterranean Ulva lactuca and Systoceira stricta algal species, J. Environ. Chem. Eng., 5 (2017) 2337–2345.
  12. S. George, D. Mehta, V.K. Saharan, Application of hydroxyapatite and its modified forms as adsorbents for water defluoridation: an insight into process synthesis, Rev. Chem. Eng., 36 (2020) 369–400.
  13. G. Ma, Three common preparation methods of hydroxyapatite, IOP Conf. Ser.: Mater. Sci. Eng., 688 (2019) 033057.
  14. S.L. Iconaru, M. Motelica-Heino, R. Guegan, M. Beuran, A. Costescu, D. Predoi, Adsorption of Pb(II) ions onto hydroxyapatite nanopowders in aqueous solutions, Materials (Basel), 11 (2018) 2204, doi:10.3390/ma11112204.
  15. S.M. Mousa, N.S. Ammar, H.A. Ibrahim, Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste, J. Saudi Chem. Soc., 20 (2016) 357–365.
  16. D.C. Manatunga, R.M. de Silva, K.M. Nalin de Silva, R. Ratnaweera, Natural polysaccharides leading to super adsorbent hydroxyapatite nanoparticles for the removal of heavy metals and dyes from aqueous solutions, RSC Adv., 6 (2016) 105618–105630.
  17. E. Kusrini, N. Sofyan, D.M. Nurjaya, S. Santoso, D. Tristantini, Removal of heavy metals from aqueous solution by hydroxyapatite/chitosan composite, Adv. Mater. Res., 789 (2013) 176–179.
  18. N.T. Thom, D.T.M. Thanh, P.T. Nam, N.T. Phuong, C. Buess-Herman, Adsorption behavior of Cd2+ ions using hydroxyapatite (HAp) powder, Green Process. Synth., 7 (2018) 409–416.
  19. N.A.S. Mohd Pu’ad, R.H. Abdul Haq, H. Mohd Noh, H.Z. Abdullah, M.I. Idris, T.C. Lee, Synthesis method of hydroxyapatite: a review, Mater. Today: Proc., 29 (2020) 233–239.
  20. M. Kalbarczyk, A. Szcześ, D. Sternik, The preparation of calcium phosphate adsorbent from natural calcium resource and its application for copper ion removal, Environ. Sci. Pollut. Res., 28 (2021) 1725–1733.
  21. G. Charlot, Dosages absorptiomètriques des éléments minéraux, 3eme edition, Masson, 1978.
  22. B. Natesh Kumar, S. Kanchi, M.I. Sabela, K. Bisetty, N.V.V. Jyothi, Spectrophotometric determination of nickel(II) in waters and soils: novel chelating agents and their biological applications supported by DFT method, Karbala Int. J. Mod. Sci., 2 (2016) 239–250.
  23. M. Benzekri Benallou, N. Douara, M.A. Chemrak, Z. Mekibes, N. Benderdouche, B. Bestani, Elimination of Malachite Green on granular activated carbon prepared from olive stones in discontinuous and continuous modes, Algerian J. Environ. Sci. Technol., 7 (2021) 1698–1706.
  24. Z. Mekibes, B. Bestani, N. Douara, N. Benderdouche, M. Benzekri-Benallou, Simultaneous activation
    of Ficus carica L. leaves for the removal of emerging pollutants from aqueous solutions, Desal. Water Treat., 222 (2021) 322–335.
  25. O. Douinat, B. Bestani, N. Benderdouche, A. Boucherdoud, Use of Olea europaea leaves-based activated carbon for pollutant removal from liquid effluents, Desal. Water Treat., 210 (2021) 258–272.
  26. D.Z. Marković-Nikolić, M.D. Cakić, G. Petković, G.S. Nikolić, Kinetics, thermodynamics and mechanisms of phosphate sorption onto bottle gourd biomass modified by (3-chloro-2-hydroxypropyl) trimethylammonium chloride, Prog. React. Kinet. Mech., 44 (2019) 267–285.
  27. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  28. S. Yanyan, W. Guangxin, S. Guoqing, W. Yaming, L. Wuhui, A. Osaka, Effects of amino acids on conversion of calcium carbonate to hydroxyapatite, RSC Adv., 10 (2020) 37005–37013.
  29. H. Mahroug, A. Mansri, F. Dergal, The effect of calcium suspension concentration on the hydroxyl-apatite structures and purity, Rev. Roum. Chim., 64 (2019) 277–286.
  30. J.C. Elliott, R.M. Wilson, S.E.P. Dowker, Apatite structures. JCPDS-international centre for diffraction data, Adv. X-ray Anal., 45 (2002).
  31. A.B. Hazar Yoruça, A. Karakaş Aydınoğlu, E. Ayas, A. Koyun, Effect of precipitation method on properties of hydroxyapatite powders, Proc. Acta Phys. Pol., A, 123 (2013) 371–373.
  32. J.H. Shariffuddin, M.I. Jones, D.A. Patterson, Greener photocatalysts: hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater, Chem. Eng. Res. Des., 91 (2013) 1693–1704.
  33. A. Khenifi, Z. Bouberka, F. Sekrane, M. Kameche, Z. Derriche, Adsorption study of an industrial dye by an organic clay, Adsorption, 13 (2007) 149–158.
  34. L.P. Cruz-Lopes, M. Macena, B. Esteves, R.P.F. Guiné, Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials, Open Agric., 6 (2021) 115–123.
  35. H. Çelebi, G. Gök, O. Gök, Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium(II), nickel(II), and zinc(II) heavy metal ions, Sci. Rep., 10 (2020) 17570,
    doi:10.1038/s41598-020-74553-4.
  36. M. Ferri, S. Campisi, A. Gervasini, Nickel and cobalt adsorption on hydroxyapatite: a study for the de-metalation of electronic industrial wastewaters, Adsorption, 25 (2019) 649–660.
  37. S. Campisi, C. Castellano, A. Gervasini, Tailoring the structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper(II) and lead(II) ions, New J. Chem., 42 (2018) 4520–4530.
  38. L. Silvester, J.-F. Lamonier, R.-N. Vannier, C. Lamonier, M. Capron, A.-S. Mamede, F. Pourpoint, A. Gervasini,
    F. Dumeignil, Structural, textural and acid-base properties of carbonates-containing hydroxyapatites, J. Mater. Chem. A, 2 (2014) 11073–11090.
  39. A.A. Taha, A.M. Ahmed, H.H. Abdel Rahman, F.M. Abouzeid, M.O. Abdel Maksoud, Removal of nickel ions by adsorption on nano-bentonite: equilibrium, kinetics, and thermodynamics, J. Dispersion Sci. Technol., 38 (2017) 757–767.
  40. M. Corral Bobadilla, R. Lostado Lorza, F. Somovilla Gómez, R. Escribano García, Adsorptive of nickel in wastewater by olive stone waste: optimization through multi-response surface methodology using desirability functions, Water, 12 (2020) 1320, doi: 10.3390/w12051320.
  41. M.A. Hubbe, A. Azizian, S. Douven, Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review, BioResouces, 14 (2019) 7582–7626.
  42. J. Bullen, S. Saleesongsom, D.J. Weiss, A revised pseudosecond- order kinetic model for adsorption, sensitive to changes in sorbate and sorbent concentrations, Langmuir, 37 (2021) 3189–3201.
  43. S. Gupta, A. Kumar, Removal of nickel(II) from aqueous solution by biosorption on A. barbadensis Miller waste leaves powder, Appl. Water Sci., 9 (2019) 1–11, doi: 10.1007/s13201-019-0973-1.