References

  1. P.L. Meena, Green materials for removal of dyes present in wastewater, Int. J. Sci. Eng. Res., 5 (2014) 5–7.
  2. F.M.D. Chequer, G.A.R. de Oliveira, E.R.A. Ferraz, J. Carvalho Cardoso, M.V.B. Zanoni, D.P. de Oliveira, Textile Dyes: Dyeing Process and Environmental Impact, M. Günay, Ed., Eco-Friendly Textile Dyeing and Finishing, InTechOpen, January 2013.
  3. M.H. Do, H.H. Ngo, W.S. Guo, Y. Liu, S.W. Chang, D.D. Nguyen, L.D. Nghiem, B.J. Ni, Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review, Sci. Total Environ., 639 (2018) 910–920.
  4. Z. Du, H. Li, T. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25 (2007) 464–482.
  5. J. Lee, C.A. Ng, P.K. Lo, M.J.K. Bashir, Enhancement of renewable electrical energy recovery from palm oil mill effluent by microbial fuel cell with activated carbon, Energy Sources Part A, 41 (2019) 2662–2674.
  6. M. Li, M. Zhou, X. Tian, C. Tan, C.T. McDaniel, D.J. Hassett, T. Gu, Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity, Biotechnol. Adv., 36 (2018) 1316–1327.
  7. A. Arkatkar, A.K. Mungray, P. Sharma, Effect of treatment on electron transfer mechanism in a microbial fuel cell, Energy Sources Part A, (2019) 1–16, doi: 10.1080/15567036.2019.1668878.
  8. S.N. Mohamed, T. Jayabalan, K. Muthukumar, Simultaneous bioenergy generation and carbon dioxide sequestration from food wastewater using algae microbial fuel cells, Energy Sources Part A, (2019) 1–9, doi:10.1080/15567036.2019.1666932.
  9. D. Jothinathan, R.T. Wilson, Production of bioelectricity in MFC by Pseudomonas fragi DRR-2 (psychrophilic) isolated from goat rumen fluid, Energy Sources Part A, 39 (2017) 433–440.
  10. C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: from fundamentals to applications.
    A review, J. Power Sources, 356 (2017) 225–244.
  11. V.S. Shrivastava, Int. J. Chem., Tech Research CODEN, USA, 4 (2012) 1038–1043.
  12. W. Xing, H.H. Ngo, S.H. Kim, W.S. Guo, P. Hagare, Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater, Bioresour. Technol., 99 (2008) 8674–8678.
  13. A.H. Ali, H.A. Al-Mussawy, M.J. Hussein, N.J. Hamadi, Comparison between conventional and modified microbial fuel cell for wastewater treatment and electricity generation, Int. J. Environ. Sci. Technol., 16 (2019) 8141–8150.
  14. N. Menek, Y. Karman, Polarographic and voltammetric investigation of 8-hydroxy-7-(4-sulfo-1naphthylazo)-5-quinoline sulfonic acid, Dyes Pigm. J., 67 (2005) 9–14.
  15. P.M. Alexander, I. Zayas, Particle size and shape effects on adsorption rate parameters, J. Environ. Eng., 115 (1989) 41–55.
  16. N. Ahalya, T.V. Ramachandra, R.D. Kanamadi, Biosorption of heavy metals, Res. J. Chem. Environ., 7 (2003) 71–78.
  17. H.R. Maier, G.C. Dandy, Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Modell. Software, 15 (2000) 101–123.
  18. V. Karthik, K. Saravanan, T. Thomas, M. Devi, Review on microbial decolorization of textile dyes, J. Chem. Pharm. Sci., 7 (2014) 293–300.
  19. S. Kannan, K. Dhandayuthapani, M. Sultana, Decolorization and degradation of azo due – Remazol Black B by newly isolated Pseudomonas putida, Int. J. Curr. Microbiol. Appl. Sci., 2 (2013) 108–116.
  20. X.-Y. Yong, J. Feng, Y.-L. Chen, D.-Y. Shi, Y.-S. Xu, J. Zhou, S.-Y. Wang, L. Xu, Y.-C. Yong, Y.-M. Sun, C.-L. Shi,
    P.-K. OuYang, T. Zheng, Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell, Biosens. Bioelectron., 56 (2014) 19–25.
  21. H. Liu, R. Ramnarayanan, B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38 (2004) 2281–2285.
  22. A. Ramanavicius, A. Kausaite, A. Ramanaviciene, Enzymatic biofuel cell based on anode and cathode powered by ethanol, Biosens. Bioelectron., 24 (2008) 767–772.
  23. B. Min, S. Cheng, B.E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39 (2005) 1675–1686.
  24. S.A. Patil, F. Harnisch, B. Kapadnis, U. Schröder, Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance, Biosens. Bioelectron., 26 (2010) 803–808.
  25. J. Yu, X. Wang, P. Yue, Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains, Water Resour., 35 (2001) 3579–3585.
  26. E.Z. Gomaa, Biodegradation and detoxification of azo dyes by some bacterial strains, Microbiol. J., 6 (2016) 15–24.
  27. W. Miran, M. Nawaz, A. Kadam, S. Shin, J. Heo, J. Jang, D.S. Lee, Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation, Environ. Sci. Pollut. Res., 22 (2015) 13477–13485.
  28. W.C. Tsan, C.W. Jung, H.R. Yao. Effect of culture time on the growth curve and power performance in a microbial fuel cell at a fixed amount of liquid culture, Int. J. Green Energy, 13 (2016) 695–702.
  29. J. Qu, Research progress of novel adsorption processes in water purification: a review, J. Environ. Sci., 20 (2008) 1–13.
  30. J.M. Mousa, A.H. Afaj, E. Abd-Alwahed, Study of removal of Pb, Zn, Cu and Ni ions from Iraqi factories wastewater using local porcelanite rocks, Iraqi Natl. J. Chem., 39 (2010) 445–454.
  31. J. Jayaprakash, A. Parthasarathy, R. Viraraghavan, Decolorization and degradation of monoazo and diazo dyes in Pseudomonas catalyzed microbial fuel cell, Environ. Prog. Sustainable Energy, 35 (2016) 1623–1628.
  32. H. Ding, Y. Li, A. Lu, S. Jin, C. Quan, C. Wang, X. Wang, C. Zeng, Y. Yan, Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode, Bioresour. Technol., 101 (2010) 3500–3505.
  33. N.M. Mahdi, A.H. Ali, Study the relationship between bacterial growth, Congo red dye removal and voltage production using single chamber microbial fuel cell, J. Phys. Conf. Ser., 1895 (2021) 012041, doi:10.1088/1742-6596/1895/1/012041.