References

  1. U.S. Geological Survey, Where is Earth’s Water?, 2018. Available at: https://www.usgs.gov/special-topic/water-science-school/ science/where-earths-water?qt-science_center_objects=0#qtscience_ center_objects (Accessed 22 July 2021).
  2. D. Du Bui, A. Kawamura, T.N. Tong, H. Amaguchi, N. Nakagawa, Spatio-temporal analysis of recent groundwaterlevel trends in the Red River Delta, Vietnam, Hydrogeol. J., 20 (2012) 1635–1650.
  3. N. Saha, M.S. Rahman, M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Industrial metal pollution in water and probabilistic assessment of human health risk, J. Environ. Manage., 185 (2017) 70–78.
  4. H.R. Kim, S. Yu, J. Oh, K.H. Kim, J.H. Lee, M. Moniruzzaman, H.K. Kim, S.T. Yun, Nitrate contamination and subsequent hydrogeochemical processes of shallow groundwater in agrolivestock farming districts in South Korea, Agric. Ecosyst. Environ., 273 (2019) 50–61.
  5. J. Buschmann, M. Berg, C. Stengel, L. Winkel, M.L. Sampson, P.T.K. Trang, P.H. Viet, Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population, Environ. Int., 34 (2008) 756–764.
  6. G. Huang, M. Zhang, C. Liu, L. Li, Z. Chen, Heavy metal(loid) s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: distributions, sources, and driving forces, Sci. Total Environ., 635 (2018) 913–925.
  7. T.H. Bui, S.P. Hong, J. Yoon, Enhanced selective removal of arsenic(V) using a hybrid nanoscale zirconium molybdate embedded anion exchange resin, Environ. Sci. Pollut. Res., 26 (2019) 37046–37053.
  8. N. Cissoko, Z. Zhang, J. Zhang, X. Xu, Removal of Cr(VI) from simulative contaminated groundwater by iron metal, Process Saf. Environ. Prot., 87 (2009) 395–400.
  9. Z. Wang, A. Ali, J. Su, X. Hu, R. Zhang, W. Yang, Z. Wu, Batch fluidized bed reactor based modified biosynthetic crystals: optimization of adsorptive properties and application in fluoride removal from groundwater, Chemosphere, 281 (2021) 130841, doi: 10.1016/j.chemosphere.2021.130841.
  10. S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, H.A. Hasan, Electrodialysis desalination for water and wastewater: a review, Chem. Eng. J., 380 (2020) 122231, doi:10.1016/j.cej.2019.122231.
  11. Z. Yang, Y. Zhou, Z. Feng, X. Rui, T. Zhang, Z. Zhang, A review on reverse osmosis and nanofiltration membranes for water purification, Polymers (Basel), 11 (2019) 1–22.
  12. W.Y. Ahn, A.G. Kalinichev, M.M. Clark, Effects of background cations on the fouling of polyethersulfone membranes by natural organic matter: experimental and molecular modeling study, J. Membr. Sci., 309 (2008) 128–140.
  13. S. Kum, D.F. Lawler, L.E. Katz, Separation characteristics of cations and natural organic matter in electrodialysis, Sep. Purif. Technol., 250 (2020) 117070, doi: 10.1016/j.seppur.2020.117070.
  14. D.W. Bian, S.M. Watson, N.C. Wright, S.R. Shah, T. Buonassisi, D. Ramanujan, I.M. Peters, A.G. Winter, Optimization and design of a low-cost, village-scale, photovoltaic-powered, electrodialysis reversal desalination system for rural India, Desalination, 452 (2019) 265–278.
  15. N.C. Wright, A.G. Winter, Justification for community-scale photovoltaic-powered electrodialysis desalination systems for inland rural villages in India, Desalination, 352 (2014) 82–91.
  16. Y.J. Kim, K. Lee, H.Y. Cha, K.M. Yoo, C.S. Jeon, H.J. Kim, D. Kim, K.Y. Park, Electrolytic denitrification with an ion-exchange membrane in groundwater, Water Sci. Technol. Water Supply, 15 (2015) 1320–1325.
  17. S.Y. Choi, M.W. Kwon, K.Y. Park, H.Y. Cha, H.J. Kim, J.H. Kweon, Groundwater polluted with arsenic and manganese, J. Korean Soc. Water Environ., 33 (2017) 334–340.
  18. S.Y. Choi, K.Y. Park, S.J. Lee, D.B. Choi, K.Y. Park, H.J. Kim, J.H. Kweon, Operating parameters in electrodialysis membrane processes for removal of arsenic in groundwater, J. Korean Soc. Water Wastewater, 30 (2016) 449–457.
  19. S.Y. Choi, K.Y. Park, Y. Yu, H.J. Kim, K.Y. Park, J.H. Kweon, J.W. Choe, Electrodialysis of groundwater with heavy metal and nitrate ions under low conductivity and effects of superficial velocities, Desal. Water Treat., 57 (2016) 26741–26750.
  20. A. El Midaoui, F. Elhannouni, M. Taky, L. Chay, M.A. Menkouchi Sahli, L. Echihabi, M. Hafsi, Optimization of nitrate removal operation from ground water by electrodialysis, Sep. Purif. Technol., 29 (2002) 235–244.
  21. L.J. Banasiak, A.I. Schäfer, Removal of inorganic trace contaminants by electrodialysis in a remote Australian community, Desalination. 248 (2009) 48–57. https://doi. org/10.1016/j.desal.2008.05.037.
  22. Y. Meride, B. Ayenew, Drinking water quality assessment and its effects on residents health in Wondo genet campus, Ethiopia, Environ. Syst. Res., 5 (2016) 1–7.
  23. K. Walha, R. Ben Amar, L. Firdaous, F. Quéméneur, P. Jaouen, Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison, Desalination, 207 (2007) 95–106.
  24. N. Kabay, M. Yüksel, S. Samatya, Ö. Arar, Ü. Yüksel, Removal of nitrate from ground water by a hybrid process combining electrodialysis and ion exchange processes, Sep. Sci. Technol., 42 (2007) 2615–2627.
  25. L. Karimi, A. Ghassemi, Effects of operating conditions on ion removal from brackish water using a pilot-scale electrodialysis reversal system, Desal. Water Treat., 57 (2016) 8657–8669.
  26. J. Schaep, B. Van Der Bruggen, S. Uytterhoeven, R. Croux, C. Vandecasteele, D. Wilms, E. Van Houtte,
    F. Vanlerberghe, Remvoal of hardness from groundwater by nanofiltration, Desalination, 119 (1998) 295–301.
  27. L. Dammak, J. Fouilloux, M. Bdiri, C. Larchet, E. Renard, L. Baklouti, V. Sarapulova, A. Kozmai, N. Pismenskaya, A review on ion-exchange membrane fouling during the electrodialysis process in the food industry,
    Part 1: Types, effects, characterization methods, fouling mechanisms and interactions, Membranes (Basel), 11 (2021) 789, doi: 10.3390/membranes11100789.
  28. R.F. Dalla Costa, C.W. Klein, A.M. Bernardes, J.Z. Ferreira, Evaluation of the electrodialysis process for the treatment of metal finishing wastewater, J. Braz. Chem. Soc., 13 (2002) 540–547.
  29. B. Cohen, N. Lazarovitch, J. Gilron, Upgrading groundwater for irrigation using monovalent selective electrodialysis, Desalination, 431 (2018) 126–139.
  30. M. Ben Sik Ali, D. Jellouli Ennigrou, B. Hamrouni, Iron removal from brackish water by electrodialysis, Environ. Technol. (United Kingdom), 34 (2013) 2521–2529.
  31. A. Sarkar, B. Paul, The global menace of arsenic and its conventional remediation – a critical review, Chemosphere, 158 (2016) 37–49.
  32. T.S.Y. Choong, T.G. Chuah, Y. Robiah, F.L. Gregory Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview, Desalination, 217 (2007) 139–166.
  33. J.I. Oh, K. Yamamoto, H. Kitawaki, S. Nakao, T. Sugawara, M.M. Rahman, M.H. Rahman, Application of
    low-pressure nanofiltration coupled with a bicycle pump for the treatment of arsenic-contaminated groundwater, Desalination, 132 (2000) 307–314.
  34. L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: a systematic review on progress and perspectives, Membranes (Basel), 10 (2020) 1–93.
  35. A. Luiz, D.D. McClure, K. Lim, G. Leslie, H.G.L. Coster, G.W. Barton, J.M. Kavanagh, Potential upgrading of
    bio-refinery streams by electrodialysis, Desalination, 415 (2017) 20–28.
  36. D. Reyter, D. Bélanger, L. Roué, Optimization of the cathode material for nitrate removal by a paired electrolysis process, J. Hazard. Mater., 192 (2011) 507–513.
  37. N. Song, J. Xu, Y. Cao, F. Xia, J. Zhai, H. Ai, D. Shi, L. Gu, Q. He, Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon microelectrolysis, Chemosphere, 248 (2020) 125986, doi: 10.1016/j. chemosphere.2020.125986.