References
- L.L. Cabral, I.C. Pereira, F. Perretto, A. Nagalli, R.C.P. Rizzo-Domingues, F.H. Passig, K.Q. de Carvalho, Adsorption and
desorption of phosphate onto chemically and thermochemically
pre-activated red ceramic waste: characteristics, batch studies,
and mechanisms, J. Environ. Chem. Eng., 9 (2021) 106695,
doi:10.1016/j.jece.2021.106695.
- N. Lemke, A. Murawski, M.I.H. Schmied-Tobies, E. Rucic,
H.-W. Hoppe, A. Conrad, M. Kolossa-Gehring, Glyphosate and
aminomethylphosphonic acid (AMPA) in urine of children and
adolescents in Germany – Human biomonitoring results of the
German Environmental Survey 2014–2017 (GerES V), Environ.
Int., 156 (2021) 106769, doi: 10.1016/j.envint.2021.106769.
- N. Botten, L.J. Wood, J.R. Werner, Glyphosate remains in
forest plant tissues for a decade or more, For. Ecol. Manage.,
493 (2021) 119259, doi: 10.1016/j.foreco.2021.119259.
- M. Xie, Z. Liu, Y. Xu, Removal of glyphosate in neutralization
liquor from the glycine-dimethylphosphit process by
nanofiltration, J. Hazard. Mater., 181 (2010) 975–980.
- J. Shen, J. Huang, H. Ruan, J. Wang, B. Van der Bruggen, Technoeconomic
analysis of resource recovery of glyphosate liquor by
membrane technology, Desalination, 342 (2014) 118–125.
- Z. Liu, M. Zhu, P. Yu, Y. Xu, X. Zhao, Pretreatment of membrane
separation of glyphosate mother liquor using a precipitation
method, Desalination, 313 (2013) 140–144.
- H. Wu, Q. Sun, J. Chen, G.-Y. Wang, D. Wang, X.-F. Zeng,
J.-X. Wang, Citric acid-assisted ultrasmall CeO2 nanoparticles
for efficient photocatalytic degradation of glyphosate, Chem.
Eng. J., 425 (2021) 130640, doi:10.1016/j.cej.2021.130640.
- X. Luo, J.-B. Zhang, L. He, X.-J. Yang, P.-Y. Lü, Analysis of the
performance and mechanism of phosphorus removal in water
by steel slag, Environ. Sci., 42 (2021) 2324–2333.
- X.-x. Wang, M. Wang, Y.-x. Jia, T.-t. Yao, The feasible study
on the reclamation of the glyphosate neutralization liquor by
bipolar membrane electrodialysis, Desalination, 300 (2012)
58–63.
- X. Li, L. Huang, H. Fang, M. Chen, Z. Cui, Z. Sun, D. Reible,
Phosphorus adsorption by sediment considering mineral
composition and environmental factors, Environ. Sci. Pollut.
Res., 28 (2021) 17495–17505.
- Z. Fan, W. Zeng, Q. Meng, H. Liu, C. Ma, Y. Peng, Achieving
partial nitrification, enhanced biological phosphorus removal
and in-situ fermentation (PNPRF) in continuous-flow system
and mechanism analysis at transcriptional level, Chem. Eng. J.,
428 (2022) 131098, doi: 10.1016/j.cej.2021.131098.
- F.-F. Chen, H.-F. Li, X.-R. Jia, Z.-Y. Wang, X. Liang, Y.-Y. Qin,
W.-Q. Chen, T.-Q. Ao, Characteristic and model of phosphate
adsorption by activated carbon electrodes in capacitive
deionization, Sep. Purif. Technol., 236 (2020) 116285,
doi: 10.1016/j.seppur.2019.116285.
- X. Ma, B. Liu, M. Che, Q. Wu, R. Chen, C. Su, X. Xu, Z. Zeng,
L. Li, Biomass-based hierarchical porous carbon with ultrahigh
surface area for super-efficient adsorption and separation of
acetone and methanol, Sep. Purif. Technol., 269 (2021) 118690,
doi: 10.1016/j.seppur.2021.118690.
- T. Liu, K. Wu, L. Zeng, Removal of phosphorus by a composite
metal oxide adsorbent derived from manganese ore tailings,
J. Hazard. Mater., 217–218 (2012) 29–35.
- C. Li, Y. Li, Q. Li, J. Duan, J. Hou, Q. Hou, S. Ai, H. Li,
Y. Yang, Regenerable magnetic aminated
lignin/Fe3O4/La(OH)3 adsorbents for the effective removal of phosphate and
glyphosate, Sci. Total Environ., 788 (2021) 147812, doi: 10.1016/j.
scitotenv.2021.147812.
- G. Xiao, Q. Meng, D151 resin preloaded with Fe3+ as a salt
resistant adsorbent for glyphosate from water in the presence
16% NaCl, Ecotoxicol. Environ. Saf., 190 (2020) 110140,
doi: 10.1016/j.ecoenv.2019.110140.
- S. Yagi, K. Fukushi, Removal of phosphate from solution
by adsorption and precipitation of calcium phosphate onto
monohydrocalcite, J. Colloid Interface Sci., 384 (2012) 128–136.
- M. Yang, J. Dai, L. Wang, Y. Li, Y. Song, First principles study
of structural stability against the distribution of Mg and Al
atoms and adsorption behaviors of heavy metals of attapulgite,
Comput. Mater. Sci., 169 (2019) 109106, doi: 10.1016/j.
commatsci.2019.109106.
- H. Wang, X. Wang, J. Ma, P. Xia, J. Zhao, Removal of cadmium(II)
from aqueous solution: a comparative study of raw attapulgite
clay and a reusable waste-struvite/attapulgite obtained from
nutrient-rich wastewater,
J. Hazard. Mater., 329 (2017) 66–76.
- L. Dong, H. Wang, Y. Huang, H. Chen, H. Cheng, L. Liu, L. Xu,
J. Zha, M. Yu, S. Wang, Y. Duan, Elemental mercury removal
from coal-fired flue gas using recyclable magnetic Mn-Fe
based attapulgite sorbent, Chem. Eng. J., 407 (2021) 127182,
doi: 10.1016/j.cej.2020.127182.
- W. Yan, D. Liu, D. Tan, P. Yuan, M. Chen, FT-IR spectroscopy
study of the structure changes of palygorskite under heating,
Spectrochim. Acta, Part A, 97 (2012) 1052–1057.
- P. Sun, W. Zhang, B. Zou, X. Wang, L. Zhou, Z. Ye, Q. Zhao,
Efficient adsorption of Cu(II), Pb(II) and Ni(II) from waste
water by PANI@APTS-magnetic attapulgite composites, Appl.
Clay Sci., 209 (2021) 106151, doi:10.1016/j.clay.2021.106151.
- R. Huang, Q. Lin, Q. Zhong, X. Zhang, X. Wen, H. Luo, Removal
of Cd(II) and Pb(II) from aqueous solution by modified
attapulgite clay, Arabian J. Chem., 13 (2020) 4994–5008.
- H. Yin, X. Yan, X. Gu, Evaluation of thermally-modified
calcium-rich attapulgite as a low-cost substrate for rapid
phosphorus removal in constructed wetlands, Water Res.,
115 (2017) 329–338.
- H. Yin, M. Han, W. Tang, Phosphorus sorption and supply
from eutrophic lake sediment amended with thermally-treated
calcium-rich attapulgite and a safety evaluation, Chem. Eng. J.,
285 (2016) 671–678.
- P.R. Christensen, J.L. Bandfield, V.E. Hamilton, D.A. Howard,
M.D. Lane, J.L. Piatek, S.W. Ruff, W.L. Stefanov, A thermal
emission spectral library of rock-forming minerals, J. Geophys.
Res.: Atmos., 105 (2000) 9735–9739.
- A. Middea, T.L.A.P. Fernandes, R. Neumann, O. da F.M. Gomes,
L.S. Spinelli, Evaluation of Fe(III) adsorption onto palygorskite
surfaces, Appl. Surf. Sci., 282 (2013) 253–258.
- W. Zhang, L. Qian, Y. Chen, D. Ouyang, L. Han, X. Shang,
J. Li, M. Gu, M. Chen, Nanoscale zero-valent iron supported
by attapulgite produced at different acid modification:
synthesis mechanism and the role of silicon on Cr(VI)
removal, Chemosphere, 267 (2021) 129183, doi: 10.1016/j.
chemosphere.2020.129183.
- H. Yin, P. Yang, M. Kong, W. Li, Use of lanthanum/aluminum
co-modified granulated attapulgite clay as a novel phosphorus
(P) sorbent to immobilize P and stabilize surface sediment in
shallow eutrophic lakes, Chem. Eng. J., 385 (2020) 123395,
doi: 10.1016/j.cej.2019.123395.
- C. Jia, Y. Mi, Z. Liu, W. Zhou, H. Gao, S. Zhang, R. Lu, Attapulgite
modified with covalent organic frameworks as the sorbent
in dispersive solid phase extraction for the determination of
pyrethroids in environmental water samples, Microchem. J.,
153 (2020) 104522, doi: 10.1016/j.microc.2019.104522.
- G.B. Douglas, D.P. Hamilton, M.S. Robb, G. Pan, B.M. Spears,
M. Lurling, Guiding principles for the development and
application of solid-phase phosphorus adsorbents for freshwater
ecosystems, Aquat. Ecol., 50 (2016) 385–405.
- E.S. Kazak, A.V. Kazak, Experimental features of cation exchange
capacity determination in organic-rich mudstones, J. Nat. Gas
Sci. Eng., 83 (2020) 103456, doi: 10.1016/j.jngse.2020.103456.
- H. Ji, X. Song, C. He, C. Tang, L. Xiong, W. Zhao, C. Zhao,
Root-soil structure inspired hydrogel microspheres with high
dimensional stability and anion-exchange capacity, J. Colloid
Interface Sci., 532 (2018) 680–688.
- D. Balarak, G. McKay, Utilization of MWCNTs/Al2O3 as
adsorbent for ciprofloxacin removal: equilibrium, kinetics and
thermodynamic studies, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 56 (2021) 324–333.
- D. Balarak, M. Zafariyan, C.A. Igwegbe, K.K. Onyechi,
J.O. Ighalo, Adsorption of Acid blue 92 dye from aqueous
solutions by single-walled carbon nanotubes: isothermal,
kinetic, and thermodynamic studies, Environ. Process.,
8 (2021) 869–888.
- T.J. Al-Musawi, N. Mengelizadeh, O. Al Rawi, D. Balarak,
Capacity and modeling of Acid blue 113 dye adsorption onto
chitosan magnetized by Fe2O3 nanoparticles, J. Polym. Environ.,
30 (2022) 344–359.
- S. Mor, K. Chhoden, P. Negi, K. Ravindra, Utilization of nanoalumina
and activated charcoal for phosphate removal from
wastewater, Environ. Nanotechnol. Monit. Manage., 7 (2017)
15–23.
- Q. Guan, L. Deng, D. Zhang, P. Ning, Z. Kong, L. He, Preparation
of tetraethylenepentamine‐functionalized 4A zeolite for
effective removal of phosphate in water, Appl. Organomet.
Chem., 34 (2020) 5861, doi:10.1002/aoc.5861.
- M. Zamparas, A. Gianni, P. Stathi, Y. Deligiannakis, I. Zacharias,
Removal of phosphate from natural waters using innovative
modified bentonites, Appl. Clay Sci., 62–63 (2012) 101–106.
- S. Jiang, J. Wang, S. Qiao, J. Zhou, Phosphate recovery from
aqueous solution through adsorption by magnesium modified
multi-walled carbon nanotubes, Sci. Total Environ., 796 (2021)
148907, doi: 10.1016/j.scitotenv.2021.148907.
- H. Yin, M. Kong, Simultaneous removal of ammonium and
phosphate from eutrophic waters using natural calcium-rich
attapulgite-based versatile adsorbent, Desalination, 351 (2014)
128–137.
- R.-y. Zhou, J.-x. Yu, H.-x. Li, R.-a. Chi, Removal of phosphate
from aqueous solution by ferrihydrite/bagasse composite
prepared through in situ precipitation method, Colloids
Surf., A, 603 (2020) 125144, doi:10.1016/j.colsurfa.2020.125144.
- L. Zhang, Q. Zhou, J. Liu, N. Chang, L. Wan, J. Chen, Phosphate
adsorption on lanthanum hydroxide-doped activated carbon
fiber, Chem. Eng. J., 185–186 (2012) 160–167.
- H. Xu, W. Zeng, S. Li, B. Wang, Z. Jia, Y. Peng, Hydrated
zirconia-loaded resin for adsorptive removal of phosphate from
wastewater, Colloids Surf., A, 600 (2020) 124909, doi: 10.1016/j.
colsurfa.2020.124909.
- Y. Wei, X. Liang, H. Wu, J. Cen, Y. Ji, Efficient phosphate
removal by dendrite-like halloysite-zinc oxide nanocomposites
prepared via noncovalent hybridization, Appl. Clay Sci.,
213 (2021) 106232, doi:10.1016/j.clay.2021.106232.
- Y. Wang, Z. Gao, Y. Shang, Z. Qi, W. Zhao, Y. Peng, Proportional
modulation of zinc-based MOF/carbon nanotube hybrids for
simultaneous removal of phosphate and emerging organic
contaminants with high efficiency, Chem. Eng. J., 417 (2021)
128063, doi: 10.1016/j.cej.2020.128063.
- Y. Tang, E. Zong, H. Wan, Z. Xu, S. Zheng, D. Zhu, Zirconia
functionalized SBA-15 as effective adsorbent for phosphate
removal, Microporous Mesoporous Mater., 155 (2012) 192–200.
- Y. Song, X. Song, Q. Sun, S. Wang, T. Jiao, Q. Peng, Q. Zhang,
Efficient and sustainable phosphate removal from water
by small-sized Al(OH)3 nanocrystals confined in discarded
Artemia Cyst-shell: ultrahigh sorption capacity and rapid
sequestration, Sci. Total Environ., 803 (2022) 150087,
doi:10.1016/j.scitotenv.2021.150087.