References

  1. Q. Du, S. Zhang, J. Song, Y. Zhao, F. Yang, Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions, J. Hazard. Mater., 389 (2020) 122115, doi: 10.1016/j.jhazmat.2020.122115.
  2. S.C.B. Myneni, J.T. Brown, G.A. Martinez, W. Meyer-Ilse, Imaging of humic substance macromolecular structures in water and soils, Science, 286 (1999) 1335–1337.
  3. P. Herzsprung, W. von Tümpling, N. Hertkorn, M. Harir, O. Büttner, J. Bravidor, K. Friese, P. Schmitt-Kopplin, Variations of DOM quality in inflows of a drinking water reservoir: linking of van krevelen diagrams with EEMF spectra by rank correlation, Environ. Sci. Technol., 46 (2012) 5511–5518.
  4. Y. Zhao, D. Lu, C. Xu, J. Zhong, M. Chen, S. Xu, Y. Cao, Q. Zhao, M. Yang, J. Ma, Synergistic oxidation - filtration process analysis of catalytic CuFe2O4 - tailored ceramic membrane filtration via peroxymonosulfate activation for humic acid treatment, Water Res., 171 (2020) 115387, doi: 10.1016/j.watres.2019.115387.
  5. Y. Xia, Y.L. Lin, B. Xu, C.Y. Hu, Z.C. Gao, W.H. Chu, N.Y. Gao, Iodinated trihalomethane formation during chloramination of iodate-containing waters in the presence of zero valent iron, Water Res., 124 (2017) 219–226.
  6. P.D. Peeva, A.E. Palupi, M. Ulbricht, Ultrafiltration of humic acid solutions through unmodified and surface functionalized low-fouling polyethersulfone membranes – effects of feed properties, molecular weight cut-off and membrane chemistry on fouling behavior and cleanability, Sep. Purif. Technol., 81 (2011) 124–133.
  7. Y. Ai, C. Zhao, L. Sun, X. Wang, L. Liang, Coagulation mechanisms of humic acid in metal ions solution under different pH conditions: a molecular dynamics simulation, Sci. Total Environ., 702 (2020) 135072, doi:10.1016/j. scitotenv.2019.135072.
  8. H. Yin, Q. Guo, C. Lei, W. Chen, B. Huang, Electrochemicaldriven carbocatalysis as highly efficient advanced oxidation processes for simultaneous removal of humic acid and Cr(VI), Chem. Eng. J., 396 (2020) 125156, doi: 10.1016/j.cej.2020.125156.
  9. Z. Ren, N. Graham, Treatment of humic acid in drinking water by combining potassium manganate (Mn(VI)), ferrous sulfate, and magnetic ion exchange, Environ. Eng. Sci., 32 (2015) 175–178.
  10. L. Xie, Q. Lu, X. Mao, J. Wang, L. Han, J. Hu, Q. Lu, Y. Wang, H. Zeng, Probing the intermolecular interaction mechanisms between humic acid and different substrates with implications for its adsorption and removal in water treatment, Water Res., 176 (2020) 115766, doi: 10.1016/j.watres.2020.115766.
  11. J. Lin, Y. Zhan, Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites, Chem. Eng. J., 200–202 (2012) 202–213.
  12. Y. Zhi, J. Liu, Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: effect of carbon surface chemistry, Environ. Pollut., 202 (2015) 168–176.
  13. Y. Zhi, J. Liu, Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions, Chemosphere, 144 (2016) 1224–1232.
  14. Y. Zhi, D.F. Call, K.D. Grieger, O.W. Duckworth, J.L. Jones, D.R.U. Knappe, Influence of natural organic matter and pH on phosphate removal by and filterable lanthanum release from lanthanum-modified bentonite, Water Res., 202 (2021) 117399, doi: 10.1016/j.watres.2021.117399.
  15. B. Li, L. Zhang, W. Yin, S. Lv, P. Li, X. Zheng, J. Wu, Effective immobilization of hexavalent chromium from drinking water by nano-FeOOH coating activated carbon: adsorption and reduction, J. Environ. Manage., 277 (2021) 111386, doi: 10.1016/j. jenvman.2020.111386.
  16. G. Zhang, T. Wu, Y. Li, X. Huang, Y. Wang, G. Wang, Sorption of humic acid to organo layered double hydroxides in aqueous solution, Chem. Eng. J., 191 (2012) 306–313.
  17. F. Yu, Y. Sun, M. Yang, J. Ma, Adsorption mechanism and effect of moisture contents on ciprofloxacin removal by threedimensional porous graphene hydrogel, J. Hazard. Mater., 374 (2019) 195–202.
  18. J. He, A. Cui, F. Ni, S. Deng, F. Shen, G. Yang, A novel 3D yttrium based-graphene oxide-sodium alginate hydrogel for remarkable adsorption of fluoride from water, J. Colloid Interface Sci., 531 (2018) 37–46.
  19. Q. Fang, Y. Shen, B. Chen, Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: a review, Chem. Eng. J., 264 (2015) 753–771.
  20. Y. Xu, Z. Lin, X. Zhong, B. Papandrea, Y. Huang, X. Duan, Solvated graphene frameworks as high-performance anodes for lithium-ion batteries, Angew. Chem. Int. Ed., 54 (2015) 5345–5350.
  21. F. Li, X. Wang, T. Yuan, R. Sun, A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(II) removal, J. Mater. Chem. A, 4 (2016) 11888–11896.
  22. D. Shan, S. Deng, C. Jiang, Y. Chen, B. Wang, Y. Wang, J. Huang, G. Yu, M.R. Wiesner, Hydrophilic and strengthened 3D reduced graphene oxide/nano-Fe3O4 hybrid hydrogel for enhanced adsorption and catalytic oxidation of typical pharmaceuticals, Environ. Sci. Nano, 5 (2018) 1650–1660.
  23. Y.T. Zhuang, X. Zhang, D.H. Wang, Y.L. Yu, J.H. Wang, Threedimensional molybdenum disulfide/graphene hydrogel with tunable heterointerfaces for high selective Hg(II) scavenging, J. Colloid Interface Sci., 514 (2018) 715–722.
  24. J. Bai, J. Chu, X. Yin, J. Wang, W. Tian, Q. Huang, Z. Jia, X. Wu, H. Guo, Z. Qin, Synthesis of amidoximated polyacrylonitrile nanoparticle/graphene composite hydrogel for selective uranium sorption from saline lake brine, Chem. Eng. J., 391 (2020) 123553, doi: 10.1016/j.cej.2019.123553.
  25. S. Kabiri, D.N.H. Tran, T. Altalhi, D. Losic, Outstanding adsorption performance of graphene-carbon nanotube aerogels for continuous oil removal, Carbon N. Y., 80 (2014) 523–533.
  26. Y. Shen, X. Zhu, L. Zhu, B. Chen, Synergistic effects of 2D graphene oxide nanosheets and 1D carbon nanotubes in the constructed 3D carbon aerogel for high performance pollutant removal, Chem. Eng. J., 314 (2017) 336–346.
  27. M. Terrones, Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications, Int. Mater. Rev., 49 (2004) 325–377.
  28. O.G. Apul, T. Karanfil, Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review, Water Res., 68 (2015) 34–55.
  29. S. Tourani, A.M. Rashidi, A.A. Safekordi, H.R. Aghabozorg, F. Khorasheh, Synthesis of reduced graphene oxide-carbon nanotubes (rGO-CNT) composite and its use as a novel catalyst support for hydro-purification of crude terephthalic acid, Ind. Eng. Chem. Res., 54 (2015) 7591–7603.
  30. J. Cao, Y. Wang, C. Chen, F. Yu, J. Ma, A comparison of graphene hydrogels modified with
    single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization, J. Colloid Interface Sci., 518 (2018) 69–75.
  31. M. Thommes, Physical adsorption characterization of nanoporous materials, Chemie-Ingenieur-Technik, 82 (2010) 1059–1073.
  32. A.M. Putz, A. Len, C. Ianăşi, C. Savii, L. Almásy, Ultrasonic preparation of mesoporous silica using pyridinium ionic liquid, Korean J. Chem. Eng., 33 (2016) 749–754.
  33. Q. Tao, Z. Xu, J. Wang, F. Liu, H. Wan, S. Zheng, Adsorption of humic acid to aminopropyl functionalized
    SBA-15, Microporous Mesoporous Mater., 131 (2010) 177–185.
  34. J. Wang, Y. Zhou, A. Li, L. Xu, Adsorption of humic acid by bi-functional resin JN-10 and the effect
    of alkali-earth metal ions on the adsorption, J. Hazard. Mater., 176 (2010) 1018–1026.
  35. J. Wang, X. Han, H. Ma, Y. Ji, L. Bi, Adsorptive removal of humic acid from aqueous solution on polyaniline/attapulgite composite, Chem. Eng. J., 173 (2011) 171–177.
  36. L. Jiang, Y. Li, Y. Shao, Y. Zhang, R. Han, S. Li, W. Wei, Enhanced removal of humic acid from aqueous solution by novel stabilized nano-amorphous calcium phosphate: behaviors and mechanisms, Appl. Surf. Sci., 427 (2018) 965–975.
  37. Q. Li, J. Wu, M. Hua, G. Zhang, W. Li, C. Shuang, A. Li, Preparation of permanent magnetic resin crosslinking by diallyl itaconate and its adsorptive and anti-fouling behaviors for humic acid removal, Sci. Rep., 7 (2017) 1–11.
  38. S. Li, M. He, Z. Li, D. Li, Z. Pan, Removal of humic acid from aqueous solution by magnetic multi-walled carbon nanotubes decorated with calcium, J. Mol. Liq., 230 (2017) 520–528.
  39. J. Zhang, J.L. Gong, G.M. Zenga, X.M. Ou, Y. Jiang, Y.N. Chang, M. Guo, C. Zhang, H.Y. Liu, Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide, Appl. Surf. Sci., 370 (2016) 335–350.
  40. L. Wang, C. Han, M.N. Nadagouda, D.D. Dionysiou, An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid, J. Hazard. Mater., 313 (2016) 283–290.
  41. S. Maghsoodloo, B. Noroozi, A.K. Haghi, G.A. Sorial, Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon, J. Hazard. Mater., 191 (2011) 380–387.
  42. K. Yang, J.T. Fox, Adsorption of humic acid by acid-modified granular activated carbon and powder activated carbon, J. Environ. Eng., 144 (2018) 04018104, doi: 10.1061/(asce) ee.1943-7870.0001390.
  43. T. Zhou, X. Zhao, S. Wu, L. Su, Y. Zhao, Efficient capture of aqueous humic acid using a functionalized stereoscopic porous activated carbon based on poly(acrylic acid)/food-waste hydrogel, J. Environ. Sci. (China), 77 (2019) 104–114.
  44. S.P. Moussavi, M.H. Ehrampoush, A.H. Mahvi, M. Ahmadian, S. Rahimi, Adsorption of humic acid from aqueous solution on single-walled carbon nanotubes, Asian J. Chem., 25 (2013) 5319–5324.
  45. T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119.
  46. X. Qin, F. Liu, G. Wang, G. Huang, Adsorption of humic acid from aqueous solution by hematite: effects of pH and ionic strength, Environ. Earth Sci., 73 (2015) 4011–4017.
  47. L. Weng, W.H. Van Riemsdijk, L.K. Koopal, T. Hiemstra, Adsorption of humic substances on goethite: comparison between humic acids and fulvic acids, Environ. Sci. Technol., 40 (2006) 7494–7500.
  48. Z. Liu, S. Zhou, Removal of humic acid from aqueous solution using polyacrylamide/chitosan semi-IPN hydrogel, Water Sci. Technol., 2017 (2018) 16–26.
  49. M.A. Zulfikar, S. Afrita, D. Wahyuningrum, M. Ledyastuti, Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption, Environ. Nanotechnol. Monit. Manage., 6 (2016) 64–75.
  50. S.G. Wang, X.F. Sun, X.W. Liu, W.X. Gong, B.Y. Gao, N. Bao, Chitosan hydrogel beads for fulvic acid adsorption: behaviors and mechanisms, Chem. Eng. J., 142 (2008) 239–247.
  51. S. Wang, T. Terdkiatburana, M.O. Tadé, Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems, Sep. Purif. Technol., 62 (2008) 64–70.
  52. J.A. Brant, A.E. Childress, Assessing short-range membranecolloid interactions using surface energetics,
    J. Membr. Sci., 203 (2002) 257–273.
  53. Y. Liu, L. Shen, H. Lin, W. Yu, Y. Xu, R. Li, T. Sun, Y. He, A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance, J. Membr. Sci., 612 (2020) 118378, doi: 10.1016/j. memsci.2020.118378.
  54. J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel, Sci. Rep., 5 (2015) 1–10.