References
- L. Reed, V. Buchner, P.B. Tchounwou, Environmental toxicology
and health effects associated with dinitrotoluene exposure, Rev.
Environ. Health, 22 (2007) 213–244.
- Y. Dong, Y. Li, C. Zhao, Y. Feng, S. Chen, Y. Dong, Mechanism of
the rapid mechanochemical degradation of hexachlorobenzene
with silicon carbide as an additive, J. Hazard. Mater., 379 (2019)
120653, doi:10.1016/j.jhazmat.2019.05.046.
- S.C. Chang, C.W. Yeh, S.K. Lee, T.W. Chen, L.C. Tsai,
Efficient remediation of river sediments contaminated by
polychlorinated biphenyls and hexachlorobenzene by coupling
in situ phase-inversion emulsification and biological reductive
dechlorination, Int. Biodeterior. Biodegrad., 140 (2019) 133–143.
- V.G. Zuin, F. Airoldi, N.R. Nascimento, M.D. Landgraf,
M. Rezende, Determination of pentachlorophenol and
hexachlorobenzene in natural waters affected by industrial
chemical residues, J. Braz. Chem. Soc., 10 (1999) 25–30.
- J. Wang, J.S. Sun, Simultaneous determination of
pentachlorophenol and hexachlorobenzene in river sediments,
J. Chin. Mass Spectrom. Soc., 27 (2006) 79–83.
- J.P. Arrebola, M. Fernandez-Rodriguez, F. Artacho-Cordon,
C. Garde, F. Perez-Carrascosa, I. Linares, I. Tovar, B. Gonzalez-Alzaga, J. Exposito, P. Torne, M.F. Fernandez, N. Olea,
Associations of persistent organic pollutants in serum and
adipose tissue with breast cancer prognostic markers, Sci. Total
Environ., 566–567 (2016) 41–49.
- L. Hardell, S.O. Andersson, M. Carlberg, L. Bohr, B. van
Bavel, G. Lindstrom, H. Bjornfoth, C. Ginman, Adipose tissue
concentrations of persistent organic pollutants and the risk of
prostate cancer, J. Occup. Environ. Med., 48 (2006) 700–707.
- S.G. Jiang, Determination of BHC, DDT, hexachlorobenzene,
heptachlor and chlorothalonil in water by GC, China Water
Wastewater, 27 (2011) 92–95.
- M.I. Badawy, R.A. Wahaab, A.S. El-Kalliny, Fenton-biological
treatment processes for the removal of some pharmaceuticals
from industrial wastewater, J. Hazard. Mater., 167 (2009)
567–574.
- P. Battistoni, E. Cola, F. Fatone, D. Bolzonella, A.L. Eusebi,
Micropollutants removal and operating strategies in
ultrafiltration membrane systems for municipal wastewater
treatment: preliminary results, Ind. Eng. Chem. Res., 46 (2007)
6716–6723.
- H.J. Liu, J.H. Qu, R.H. Dai, J. Ru, Z.J. Wang, A biomimetic
absorbent for removal of trace level persistent organic pollutants
from water, Environ. Pollut., 147 (2007) 337–342.
- G. Cravotto, S. Di Carlo, B. Ondruschka, V. Tumiatti,
C.M. Roggero, Decontamination of soil containing POPs by the
combined action of solid Fenton-like reagents and microwaves,
Chemosphere, 69 (2007) 1326–1329.
- G. Cravotto, S. Di Carlo, V. Tumiatti, C. Roggero, H.D. Bremner,
Degradation of persistent organic pollutants by Fenton’s
reagent facilitated by microwave or high-intensity ultrasound,
Environ. Technol., 26 (2005) 721–724.
- Venny, S. Gan, N.K. Ng, Current status and prospects of
Fenton oxidation for the decontamination of persistent organic
pollutants (POPs) in soils, Chem. Eng. J., 213 (2012) 295–317.
- Z. Barbierikova, E. Plizingrova, M. Motlochova, P. Bezdicka,
J. Bohacek, D. Dvoranova, M. Mazur, J. Kupcik,
J. Jirkovsky,
J. Subrt, J. Krysa, V. Brezova, N-Doped titanium dioxide
nanosheets: preparation, characterization and UV/visible-light
activity, Appl. Catal., B, 232 (2018) 397–408.
- S. Kohtani, A. Kawashima, H. Miyabe, Reactivity of trapped
and accumulated electrons in titanium dioxide photocatalysis,
Catalysts, 7 (2017) 303, doi: 10.3390/catal7100303.
- K. Tanaka, K. Harada, S. Murata, Photocatalytic deposition
of metal ions onto TiO2 powder, Sol Energy, 36 (1986) 159–161.
- J.G. Mahy, S.D. Lambert, R.G. Tilkin, C. Wolfs, D. Poelman,
F. Devred, E.M. Gaigneaux, S. Douven, Ambient temperature
ZrO2-doped TiO2 crystalline photocatalysts: highly efficient
powders and films for water depollution, Mater. Today Energy,
13 (2019) 312–322.
- N. Wang, X. Li, Y. Yang, T. Guo, X. Zhuang, S. Ji, T. Zhang,
Y. Shang, Z. Zhou, Enhanced photocatalytic degradation of
sulfamethazine by Bi-doped TiO2 nano-composites supported
by powdered activated carbon under visible light irradiation,
Sep. Purif. Technol., 211 (2019) 673–683.
- M. Karches, M. Morstein, P. von Rohr, R.L. Pozzo, J.L. Giombi,
M.A. Baltanas, Plasma-CVD-coated glass beads as photocatalyst
for water decontamination, Catal. Today, 72 (2002) 267–279.
- M.J. Garcia-Martinez, L. Canoira, G. Blazquez, I. Da Riva,
R. Alcantara, J.F. Llamas, Continuous photodegradation of
naphthalene in water catalyzed by TiO2 supported on glass
Raschig rings, Chem. Eng. J., 110 (2005) 123–128.
- B. Tryba, Immobilization of TiO2 and Fe-C-TiO2 photocatalysts
on the cotton material for application in a flow photocatalytic
reactor for decomposition of phenol in water, J. Hazard. Mater.,
151 (2008) 623–627.
- S.N. Hosseini, S.M. Borghei, M. Vossoughi, N. Taghavinia,
Immobilization of TiO2 on perlite granules for photocatalytic
degradation of phenol, Appl. Catal., B, 74 (2007) 53–62.
- J.Q. Li, L.P. Li, L. Zheng, Y.Z. Xian, L.T. Jin, Determination of
chemical oxygen demand values by a photocatalytic oxidation
method using nano-TiO2 film on quartz, Talanta, 68 (2006)
765–770.
- S.Z. Kang, Z.F. Gu, D.Y. Gu, J. Mu, Immobilization and
photocatalytic activity of TiO2 nanoparticles on porous
aluminium foil, J. Dispersion Sci. Technol., 26 (2005) 169–171.
- Y. Chen, D.D. Dionysiou, Immobilization of transparent
NaNo-TiO2 photocatalytic films on stainless steel for water
purification, Abstr. Papers Am. Chem. Soc., 229 (2005) U922.
- J.M. Lee, M.S. Kim, B.W. Kim, Photodegradation of bisphenol-A
with TiO2 immobilized on the glass tubes including the UV
light lamps, Water Res., 38 (2004) 3605–3613.
- K.V.S. Rao, A. Rachel, M. Subrahmanyam, P. Boule,
Immobilization of TiO2 on pumice stone for the photocatalytic
degradation of dyes and dye industry pollutants, Appl. Catal.,
B, 46 (2003) 77–85.
- M. Zhang, M. Liu, Y. Jiang, J. Li, Q. Chen, Synthesis of
immobilized CdS/TiO2 nanofiber heterostructure photocatalyst
for efficient degradation of toluene, Water Air Soil Pollut.,
231 (2020),
doi: 10.1007/s11270-020-4461-x.
- M. Malakootian, A. Nasiri, M.A. Gharaghani, Photocatalytic
degradation of ciprofloxacin antibiotic by TiO2 nanoparticles
immobilized on a glass plate, Chem. Eng. Commun., 207 (2020)
56–72.
- J.C. Espindola, R.O. Cristovao, A. Mendes, R.A.R. Boaventura,
V.J.P. Vilar, Photocatalytic membrane reactor performance
towards oxytetracycline removal from synthetic and real
matrices: suspended vs immobilized TiO2-P25, Chem. Eng. J.,
378 (2019) 122114, doi: 10.1016/j.cej.2019.122114.
- H. Belayachi, B. Bestani, N. Benderdouche, M. Belhakem,
The use of TiO2 immobilized into grape marc-based activated
carbon for RB-5 Azo dye photocatalytic degradation, Arabian J.
Chem., 12 (2015) 3018–3027.
- S. Sabar, M.A. Nawi, A.H. Jawad, R. Schneider, Enhanced
photocatalytic degradation of phenol by immobilized TiO2/dye-loaded
chitosan, Desal. Water Treat., 167 (2019) 190–199.
- D.D. Claudio, A.R. Phani, S. Santucci, Enhanced optical
properties of sol-gel derived TiO2 films using microwave
irradiation, Opt. Mater., 30 (2007) 279–284.
- J.R. Bolton, M.I. Stefan, P.S. Shaw, K.R. Lykke, Determination of
the quantum yields of the potassium ferrioxalate and potassium
iodide-iodate actinometers and a method for the calibration of
radiometer detectors, J. Photochem. Photobiol., A, 222 (2011)
166–169.
- W.L. Wang, Q.Y. Wu, Z.M. Li, Y. Lu, Y. Du, T. Wang, N. Huang,
H.Y. Hu, Light-emitting diodes as an emerging UV source
for UV/chlorine oxidation: carbamazepine degradation and
toxicity changes, Chem. Eng. J., 310 (2017) 148–156.
- J. Hu, Z. Huang, J. Yu, Highly-effective mechanochemical
destruction of hexachloroethane and hexachlorobenzene with
Fe/Fe3O4 mixture as a novel additive, Sc i. Total Environ.,
659 (2019) 578–586.
- C. Mauger, R. Volk, N. Machicoane, M. Bourgoin, C. Cottin-
Bizonne, C. Ybert, F. Raynal, Diffusiophoresis at the macroscale,
Phys. Rev. Fluids, 1 (2016) 363–368.
- S. Bendjabeur, R. Zouaghi, B. Zouchoune, T. Sehili, DFT and
TD-DFT insights, photolysis and photocatalysis investigation of
three dyes with similar structure under UV irradiation with and
without TiO2 as a catalyst: effect of adsorption, pH and light
intensity, Spectrochim. Acta A, 190 (2018) 494–505.
- O.M. Alfano, R.J. Brandi, A.E. Cassano, Degradation kinetics of
2,4-D in water employing hydrogen peroxide and UV radiation,
Chem. Eng. J., 82 (2001) 209–218.
- H.T. Chang, N.M. Wu, F.Q. Zhu, A kinetic model for
photocatalytic degradation of organic contaminants
in a thinfilm
TiO2 catalyst, Water Res., 34 (2000) 407–416.
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann,
Environmental applications of semiconductor photocatalysis,
Chem. Rev., 95 (1995) 69–96.