References

  1. L.F. Stadlmair, T. Letzel, J.E. Drewes, J. Grassmann, Enzymes in removal of pharmaceuticals from wastewater:
    a critical review of challenges, applications and screening methods for their selection, Chemosphere, 205 (2018) 649–661.
  2. Z. Li, Z. Ma, T.J. van der Kuijp, Z. Yuan, L. Huang, A review of soil heavy metal pollution from mines in China: pollution and health risk assessment, Sci. Total Environ., 468 (2014) 843–853.
  3. T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M. Iqbal, Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment, Environ. Int., 122 (2019) 52–66.
  4. L. Gao, Y. Shi, .W. Li, H. Niu, J. Liu, Y. Cai, Occurrence of antibiotics in eight sewage treatment plants in Beijing, China, Chemosphere, 86 (2012) 665–671.
  5. K.F. Kong, L. Schneper, K. Mathee, Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS, 118 (2010) 1–36.
  6. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu, Q. Wei, D. Wei, A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches, J. Hazard. Mater., 387 (2020) 121682, doi: 10.1016/j. jhazmat.2019.121682.
  7. U. Bornscheuer, K. Buchholz, J. Seibel, Enzymatic degradation of (ligno) cellulose, Angew. Chem. Int. Ed., 53 (2014) 10876–10893.
  8. R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis: why, what and how, Chem. Soc. Rev., 42 (2013) 6223–6235.
  9. U. Guzik, K. Hupert-Kocurek, D. Wojcieszyńska, Immobilization as a strategy for improving enzyme properties-application to oxidoreductases, Molecules, 19 (2014) 8995–9018.
  10. N.I. Abd Halin, M.F. Rashid Al-Khatib, H.M. Salleh, M.M. Nasef, Immobilization of Candida rugosa lipase on aminated polyvinyl benzyl chloride-grafted Nylon-6 microfibers, Bull. Chem., 14 (2019) 369–379.
  11. Ö.B. Acikara, G.S. Çitoğlu, S. Özbilgin, B. Ergene, Affinity chromatography and importance in drug discovery, Column Chromatography, InTech, 2013.
  12. P.-E. Gustavsson, P.-O. Larsson, Support Materials for Affinity Chromatography, Handbook of Affinity Chromatography, 2006, pp. 16–32.
  13. P. Ball, The clinical development and launch of amoxicillin/clavulanate for the treatment of a range of community-acquired infections, Int. J. Antimicrob. Agents, 30 (2007) 113–117.
  14. P. Vella, M. Miraula, E. Phelan, E.W. Leung, F. Ely, D.L. Ollis, R.P. McGeary, G. Schenk, N. Mitić, Identification and characterization of an unusual metallo-β-lactamase from Serratia proteamaculans, J. Biol. Inorg. Chem., 18 (2013) 855–863.
  15. M. Sabet, Z. Tarazi, D.C. Griffith, In vivo activity of QPX7728, an ultrabroad-spectrum beta-lactamase inhibitor, in combination with beta-lactams against carbapenem-resistant Klebsiella pneumonia, Antimicrob. Agents Chemother., 64 (2020) e01267–20.
  16. G.G. Zhanel, C.D. Lawson, H. Adam, F. Schweizer, S. Zelenitsky, P.R.S. Lagacé-Wiens, A. Denisuik, E. Rubinstein, A.S. Gin, D.J. Hoban, J.P. Lynch 3rd, J.A. Karlowsky, Ceftazidimeavibactam: a novel cephalosporin/β-lactamase inhibitor combination, Drugs, 73 (2013) 159–177.
  17. O. Lomovskaya, R. Tsivkovski, K. Nelson, D. Rubio-Aparicio, D. Sun, M. Totrov, M.N. Dudley, Spectrum
    of beta-lactamase inhibition by the cyclic boronate QPX7728, an ultrabroadspectrum beta-lactamase inhibitor of serine and metallo-betalactamases: enhancement of activity of multiple antibiotics against isogenic strains expressing single beta-lactamases, Antimicrob. Agents Chemother., 64 (2020) e00212–20.
  18. X. Gao, X. Fan, X. Chen, Z. Ge, Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation
    of β-lactam antibiotics in wastewater, Int. J. Environ. Sci. Technol., 15 (2018) 2203–2212.
  19. L. Yang, D. Hu, H. Liu, X. Wang, Y. Liu, Q. Xia, S. Deng, Y. Hao, Y. Jin, M. Xie, Biodegradation pathway of penicillins by β-lactamase encapsulated in metal-organic frameworks, J. Hazard. Mater., 414 (2021) 125549, doi: 10.1016/j. jhazmat.2021.125549.
  20. O.K. Arjomandi, M. Kavoosi, H. Adibi, Synthesis and investigation of inhibitory activities of imidazole derivatives against the metallo-β-lactamase IMP-1, Bioorg. Chem., 92 (2019) 103277, doi:10.1016/j.bioorg.2019.103277.
  21. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248–254.
  22. F. Karami, M. Ghorbani, A.S. Mahoonak, R. Khodarahmi, Fast, inexpensive purification of β-glucosidase from Aspergillus niger and improved catalytic/physicochemical properties upon the enzyme immobilization: possible broad prospects for industrial applications, LWT, 118 (2020) 108770,
    doi: 10.1016/j. lwt.2019.108770.
  23. N. Laraki, N. Franceschini, G.M. Rossolini, P. Santucci, C. Meunier, E. de Pauw, G. Amicosante, J.M. Frère,
    M. Galleni, Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase
    IMP-1 produced by Escherichia coli, Antimicrob. Agents Chemother., 43 (1999) 902–906.
  24. M.-K. Kharel, K.-K. Liou, J.-K. Sohng, H.-C. Lee, Production of dTDP-4-keto-6-deoxy-D-glucose by immobilization of dTDPD- glucose 4,6-dehydratase, J. Microbiol. Biotechnol., 14 (2004) 297–301.
  25. B. Brena, P. González-Pombo, F. Batista-Viera, Immobilization of Enzymes: A Literature Survey, Immobilization of Enzymes and Cells, 2013, pp. 15–31.
  26. L. Fernandez-Lopez, S.G. Pedrero, N. Lopez-Carrobles, B.C. Gorines, J.J. Virgen-Ortíz, R. Fernandez-Lafuente, Effect of protein load on stability of immobilized enzymes, Enzyme Microbiol. Technol., 98 (2017) 18–25.
  27. M. Kumakura, I. Kaetsu, Interaction of enzyme with polymer matrix in immobilized enzymes, Helv. Chim. Acta, 66 (1983) 2044–2048.
  28. X. Zou, S. Wei, S. Badieyan, M. Schroeder, J. Jasensky, C.L. Brooks III, E. Neil G. Marsh, Z. Chen, Investigating the effect of two-point surface attachment on enzyme stability and activity, J. Am. Chem. Soc., 140 (2018) 16560–16569.
  29. R. Bussamara, L. Dall’Agnol, A. Schrank, K.F. Fernandes, M.H. Vainstein, Optimal conditions for continuous immobilization of Pseudozyma hubeiensis (strain HB85A) lipase by adsorption in a packed-bed reactor by response surface methodology, Enzyme Res., 2012 (2012), doi: 10.1155/2012/329178.
  30. S.Z. Mazlan, S.A. Hanifah, Effects of temperature and pH on immobilized laccase activity in conjugated methacrylateacrylate microspheres, Int. J. Polym. Sci., 2017 (2017) 5657271, doi: 10.1155/2017/5657271.
  31. T. Nematian, A. Shakeri, Z. Salehi, A.A. Saboury, Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil, Biotechnology, 13 (2020) 1–15.
  32. M. Karra-Châabouni, I. Bouaziz, S. Boufi, A.M.B. do Rego, Y. Gargouri, Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies, Colloids Surf., B, 66 (2008) 168–177.
  33. J. Lasch, R. Koelsch, Enzyme leakage and multipoint attachment of agarose‐bound enzyme preparations, FEBS J., 82 (1978) 181–186.