References
- A. Belila, J. El-Chakhtoura, N. Otaibi, G. Muyzer, G. Gonzalez-Gil, P.E. Saikaly, M.C.M. van Loosdrecht,
J.S. Vrouwenvelder,
Bacterial community structure and variation in a full-scale
seawater desalination plant for drinking water production,
Water Res., 94 (2016) 62–72.
- G.X. Dong, J.F. Kim, J. Kim, E. Drioli, Y.M. Lee, Open-source
predictive simulators for scale-up of direct contact membrane
distillation modules for seawater desalination, Desalination,
402 (2017) 72–87.
- L.S. Andrés, S. Phillips, D. Childs, A water-lubricated hybrid
thrust bearing: measurements and predictions of static load
performance, J. Eng. Gas Turbines Power, 139 (2017) 72–87.
- J. Zhao, W. Yan, Z. Wang, D. Gao, G. Du, Study on clearancerubbing
dynamic behavior of 2-DOF supporting system of
magnetic-liquid double suspension bearing, Processes, 8 (2020)
973–988.
- T.W. Wu, Influence of bearing friction and wear on dynamic
response characteristics of flexibly supported rotor, Atomic
Energy Sci. Technol., 54 (2020) 715–724.
- J. Zhao, L. Xing, S. Li, W. Yan, D. Gao, G. Du, Impact-rubbing
dynamic behavior of magnetic-liquid double suspension
bearing under different protective bearing forms, Processes,
9 (2021) 1105, doi:10.3390/pr9071105.
- M. Torkhani, L. May, P. Voinis, Light, medium and heavy partial
rubs during speed transients of rotating machines: numerical
simulation and experimental observation, Mech. Syst. Sig.
Process., 29 (2012) 45–66.
- A.N. Nikiforov, Vibroimpact motion, slippage and return of the
rotor on the stator, J. Mach. Manuf. Reliability, 41 (2012) 11–19.
- H. Yu, Y. Ran, G. Zhang, X. Li, B. Li, A time-varying
comprehensive dynamic model for the rotor system with
multiple bearing faults, J. Sound Vib., 488 (2020) 115650,
doi: 10.1016/j.jsv.2020.115650.
- H. Xu, N. Wang, D. Jiang, T. Han, D. Li, Dynamic characteristics
and experimental research of dual-rotor system with rubimpact
fault, Shock Vib., 6 (2016) 1–11.
- L.J. Jin, J.X. Yang, C.G. Li, Numerical coupled model of mixed
lubrication wear for textured journal bearing, Lubr. Eng.,
45 (2019) 64–74.
- B.X. Zhao, D.W. Ja, Q. Yuan, P. Li, Q. Ge, Rubbing fault diagnosis
of rotor system based on combined feature space in time and
time-frequency domains, J. Xi’an Jiaotong Univ., 54 (2019) 1–11.
- W.L. Xiong, C. Hu, L. Lv, L.G. Zheng, Research on the influence
of controllable restrictor parameters on the characteristics of
hydrostatic journal bearings, Chin. J. Mech. Eng., 54 (2018) 63–71.
- H. Yu, Y.S. Chen, Q.J. Cao, Nonlinear dynamic behavior
analysis for a cracked multi-DOF rotor system, Shock Vib.,
33 (2014) 92–98.
- S.B. Bulgarevic, M.V. Boiko, K.S. Lebedinskii, Adsorption
separation of components of liquid lubricant on rubbing
surfaces under sliding friction, J. Friction Wear, 36 (2015)
534–541.
- G.A. Kostyuk, F.V. Shatokhin, A.O. Volokhovskaya, Specific
features relating to the motion of a rotor with rubbing against
the stator, Therm. Eng., 60 (2013) 628–634.
- G. Zhang, Q.Z. Ying, S.P. Liang, Research on nonlinear
dynamics of five-DOF active magnetic bearings-rotor system,
Chin. J. Mech. Eng., 46 (2020) 15–21.
- L. Cheng, G.S. Cheng, J. Yang, Research on the method of
automatic repair of bearing wear at high speed, Ship Sci.
Technol., 41 (2019) 203–205.
- G.Y. Zhang, H.Z. Huang, M. Zhou, K. Chen, J.A. Wei, Nonlinear
dynamic model and its stability for the generator rotor with
coupling the unbalanced electromagnetic force and the oil film
force, Proc. CSEE, 34 (2014) 2406–2413.
- B.Y. Sun, R.S. Liang, W. Chen, Control of nonlinear behaviors of
an active magnetic Bearing-Rotor system, Noise Vibr. Control,
31 (2011) 11–14.
- Z.W. Xie, W.X. Mou, H. Zhou, X. Wang, Variable parameter
control of active magnetic bearing rotor system based on
rotation speed, J. Vibr. Eng., 25 (2012) 739–744.
- Y. Shang, J. Ling, X. Liu, X. Xin, Impact of hydrostatic bearings
on the dynamic performance of electric spindle rotor device,
Mech. Sci. Technol., 34 (2015) 588–693.
- G. Peng, C. Li, C. Cao, J. Hong, Dynamic response and safety
design of rotor system with impact excitation, Propul. Technol.,
39 (2018) 1111–1121.
- P. Kankar, S. Sharma, S. Harsha, Fault diagnosis of ball bearings
using machine learning methods, Expert Syst. Appl., 38 (2010)
1876–1886.
- J.J. Sinou, A.W. Lees, The influence of cracks in rotating shafts,
J. Sound Vib., 285 (2004) 1015–1037.
- L. Hou, Y.S. Chen, Z.Y. Lu, Z.G. Li, Bifurcation analysis for 2:1
and 3:1 super-harmonic resonances of an aircraft cracked rotor
system due to maneuver load, Springer Netherlands, 81 (2015)
531–547.
- G. Jacquet-Richardet, M. Torkhani, P. Cartraud, F. Thouverez,
T.N. Baranger, M. Herran, C. Gibert, S. Baguet,
P. Almeida,
L. Peletan, Rotor to stator contacts in turbomachines. Review
and application, Mech. Syst. Sig. Process., 40 (2013) 401–420.
- L. Hou, Y.S. Chen, Q.J. Cao, Nonlinear vibration phenomenon
of an aircraft rub-impact rotor system due to hovering flight,
Commun. Nonlinear Sci. Numer. Simul., 19 (2014) 286–297.
- H. Ma, X.Y. Zhao, Y.N. Teng, B.C. Wen, Analysis of dynamic
characteristics for a rotor system with pedestal looseness, Shock
Vibr., 18 (2011) 13–27.
- A.S. Sekhar, Crack detection and monitoring in a rotor
supported on fluid film bearings: start-up vs run-down, Mech.
Syst. Sig. Process., 17 (2001) 897–901.
- K. Lu, Y.L. Jin, P.F. Huang, F. Zhang, H.P. Zhang, C. Fu,
Y.S. Chen, The applications of POD method in dual rotorbearing
systems with coupling misalignment, Mech. Syst. Sig.
Process., 150 (2020) 1–17.
- Y. Ma, H. Liu, Y. Zhu, F. Wang, Z. Luo, The NARX model-based
system identification on nonlinear, rotor-bearing systems, Appl.
Sci., 7 (2017) 1–15.
- A. Alho, C. Uggla, Global dynamics and inflationary center
manifold and slow-roll approximants, J. Math. Phys., 56 (2014)
241101–360.