References

  1. A.M. Saunders, M. Albertsen, J. Vollertsen, P.H. Nielsen, The activated sludge ecosystem contains a core community of abundant organisms, ISME J., 10 (2016) 111–119.
  2. A. Sengar, A. Aziz, I.H. Farooqi, F. Basheer, Development of denitrifying phosphate accumulating and anammox microorganisms in anaerobic hybrid reactor for removal of nutrients from low strength domestic sewage, Bioresour. Technol., 83 (2018) 559–568.
  3. D. Li, X. Liang, Y. Jin, C. Wu, R.Q. Zhou, Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Klebsiella sp. TN-10, Biochem. Biotechnol., 188 (2019) 540–554.
  4. H. Liu, Q. Wang, Y. Sun, K. Zhou, W. Liu, Q. Lu, C. Ming, X. Feng, J. Du, X. Jia, J. Li, Isolation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and phosphorus accumulation and relevant metabolic mechanisms, Bioresour. Technol., 211 (2016) 6–15.
  5. Q. Jia, H. Xiong, H. Wang, H. Shi, X. Sheng, R. Sun, G. Chen, Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales, Bioresour. Technol., 171 (2017) 159–167.
  6. M. Carvalheira, A. Oehmen, G. Carvalho, M.A.M. Reis, Survival strategies of polyphosphate accumulating organisms and glycogen accumulating organisms under conditions of low organic loading, Bioresour. Technol., 172 (2014) 290–296.
  7. A. Chojnacka, M.K. Błaszczyk, P. Szczęsny, K. Nowak, M. Sumińska, K. Tomczyk-Żak, U. Zielenkiewicz, A. Sikora, Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria, Bioresour. Technol., 102 (2014) 10057–10064.
  8. J. Fang, P.-d. Sun, S.-j. Xu, T. Luo, J.-q. Lou, J.-y. Han, Y.-q. Song, Impact of Cr(VI) on P removal performance in enhanced biological phosphorus removal (EBPR) system based on the anaerobic and aerobic metabolism, Bioresour. Technol., 121 (2014) 379–385.
  9. S.-b. Xia, J.-x. Liu, An innovative integrated oxidation ditch with vertical circle (IODVC) for wastewater treatment, Process Biochem., 39 (2004) 1111–1117.
  10. R. Liu, X. Hao, Q. Chen, J. Li, Research advances of Tetrasphaera in enhanced biological phosphorus removal: a review, Water Res., 166 (2019) 115–122.
  11. F.J. Rubio-Rincón, D.G. Weissbrodt, C.M. Lopez-Vazquez, L. Welles, B. Abbas, M. Albertsen, P.H. Nielsen,
    M.C.M. van Loosdrecht, D. Brdjanovic, “Candidatus accumulibacter delftensis”: a clade IC novel polyphosphateaccumulating organism without denitrifying activity on nitrate, Water Res., 161 (2019) 136–151.
  12. W. Song, M.J. Zheng, H. Li, W. Zheng, F. Guo, Profiling population-level diversity and dynamics of Accumulibacter via high throughput sequencing of ppk1, Microbiol. Biotechnol., 103 (2019) 9711–9722.
  13. Y.-M. Guo, Y.-G. Liu, G.-M. Zeng, X.-J. Hu, W.-H. Xu, Y.-Q. Liu, S.-M. Liu, H.-S. Sun, J. Ye, H.-J. Huang, An integrated treatment of domestic wastewater using sequencing batch biofilm reactor combined with vertical flow constructed wetland and its artificial neural network simulation study, Ecol. Eng., 64 (2014) 18–26.
  14. G.W. Fuhs, M. Chen, Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater, Microb. Ecol., 2 (1975) 119–138.
  15. L.H. Lötter, The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process, Water Sci. Technol., 17 (1985) 127–138.
  16. Y. Wang, Y. Peng, T. Stephenson, Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process, Bioresour. Technol., 100 (2009) 3506–3512.
  17. W. Zeng, L. Zhang, P. Fan, J. Guo, Y. Peng, Community structures and population dynamics of “Candidatus Accumulibacter” in activated sludges of wastewater treatment plants using ppk1 as phylogenetic marker, Environ. Sci., 67 (2018) 237–248.
  18. X. Huang, W. Dong, H. Wang, S. Jiang, Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater, Bioresour. Technol., 241 (2017) 969–978.
  19. A. Oehmen, R. Keller-Lehmann, R.J. Zeng, Z.G. Yuan, J. Keller, Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems, Chromatography, 1070 (2005) 131–136.
  20. P.L. Bond, R. Erhart, M. Wagner, J. Keller, L.L. Blackall, Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems, Environ. Microbiol., 65 (1999) 4077–4084.
  21. G. Sin, K. Niville, G. Bachis, T. Jiang, I. Nopens, S. van Hulle, P.A. Vanrolleghem, Nitrite effect on the phosphorus uptake activity of phosphate accumulating organisms (PAOs) in pilotscale SBR and MBR reactors, Water SA, 34 (2008) 17–38.
  22. Y. Yoshida, Y. Kim, T. Saito, K. Tanaka, Development of the modified activated sludge model describing nitrite inhibition of aerobic phosphate uptake, Water Sci. Technol., 59 (2009) 621–637.
  23. H. Li, H. Liu, Q. Zeng, M. Xu, Y. Li, W. Wang, Y. Zhong, Isolation and appraisal of a non-fermentative bacterium, Delftia tsuruhatensis, as denitrifying phosphate-accumulating organism and optimal growth conditions, Water Process Eng., 36 (2020) 1012–1034.
  24. H. Zou, Y. Wang, Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization, Bioresour. Technol., 211 (2021) 87–92.
  25. Z. Lin, Y. Wang, W. Huang, J. Wang, L. Chen, J. Zhou, Q. He, Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery, Bioresour. Technol., 277 (2019) 27–36.
  26. C. Zhang, Y. Qian, L. Yuan, S. He, Y. Wang, L. Wang, Nutrients removal performance of a denitrifying phosphorus removal process in alternate anaerobic/anoxic-aerobic double membrane bioreactors
    (A2N-DMBR), Water Sci. Technol., 78 (2018) 1741–1752.
  27. H. Liu, Q. Wang, Y. Sun, K. Zhou, W. Liu, Q. Lu, C. Ming, X. Feng, J. Du, X. Jia, J. Li, solation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and
    phosphorus-accumulation and relevant metabolic mechanisms, Bioresour. Technol., 211 (2016) 6–15.
  28. Y. Barak, J. van Rijn, Relationship between nitrite reduction and active phosphate uptake in the phosphate-accumulating denitrifier Pseudomonas sp. strain JR 12, Environ. Microbiol., 66 (2000) 5236–5240.
  29. H. Wang, Q. He, D. Chen, L. Wei, Z. Zou, J. Zhou, K. Yang, H. Zhang, Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing, Microbiol. Biotechnol., 99 (2015) 10829–10837.
  30. H. Yu, M. Li, Denitrifying and phosphorus accumulating mechanisms of denitrifying phosphorus accumulating organisms (DPAOs) for wastewater treatment—a review, Acta Microbiol. Sin., 55 (2015) 264–272.
  31. M. Zhang, J. Gao, Q. Liu, Y. Fan, C. Zhu, Y. Liu, C. He, J. Wu, Nitrite accumulation and microbial behavior by seeding denitrifying phosphorus removal sludge for partial denitrification (PD): the effect of COD/NO3 ratio, Bioresour. Technol., 323 (2020) 1245–1257.
  32. C. Li, J. Zhang, S. Liang, H.H. Ngo, W. Guo, Y. Zhang, Y. Zou, Nitrous oxide generation in denitrifying phosphorus removal process: main causes and control measures, Environ. Sci. Pollut. Res., 20 (2013) 5353–5360.
  33. Y. Sun, Y. Peng, J. Zhang, X. Li, Q. Zhang, L. Zhang, Effect of endogenous metabolisms on survival and activities of denitrifying phosphorus removal sludge under various starvation conditions, Bioresour. Technol., 315 (2020) 123839, doi: 10.1016/j.biortech.2020.123839.
  34. Q. Zhao, M. Yu, H. Lu, Y.-H. Zhang, B.K. Biswal, G.-H. Chen, D. Wu, Formation and characterization of the
    micro-size granular sludge in denitrifying sulfur-conversion associated enhanced biological phosphorus removal (DS-EBPR) process, Bioresour. Technol., 291 (2019) 121871, doi: 10.1016/j. biortech.2019.121871.
  35. T. Zhang, M.-F. Shao, L. Ye, 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants, ISME J., 62 (2012) 1137–1147.
  36. Q. Ma, Y. Qu, W. Shen, Z. Zhang, J. Wang, Z. Liu, D. Li, H. Li, J. Zhou, Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing, Bioresour. Technol., 179 (2015) 436–443.
  37. R. Du, S. Cao, B. Li, M. Niu, S. Wang, Y. Peng, Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters, Water Res., 108 (2017) 46–56.
  38. C. Wan, Q. Zhang, D.-J. Lee, Y. Wang, J. Li, Long-term storage of aerobic granules in liquid media: viable but non-culturable status, Bioresour. Technol., 166 (2014) 464–470.
  39. Z. Jin, F.-Y. Ji, X. Xu, X.-Y. Xu, Q.-K. Chen, Q. Li, Microbial and metabolic characterization of a denitrifying phosphorusuptake/ side stream phosphorus removal system for treating domestic sewage, Biodegradation, 25 (2014) 777–786.
  40. M.F. Carosia, D.Y. Okada, I.K. Sakamoto, E.L. Silva, M.B. Amâncio Varesche, Microbial characterization and degradation of linear alkylbenzene sulfonate in an anaerobic reactor treating wastewater containing soap powder, Bioresour. Technol., 167 (2014) 316–323.
  41. Q. He, J. Zhou, H. Wang, J. Zhang, L. Wei, Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor, Bioresour. Technol., 214 (2016) 1–8.
  42. R. Liao, Y. Li, J. Du, A. Li, H. Song, Z. Shen, Y. Li, Analysis of high-nitrate, high-salinity wastewater in an expanded granular sludge bed reactor and microbial community, Desal. Water Treat., 57 (2016) 4357–4364.
  43. T. Shigematsu, K. Yumihara, Y. Ueda, M. Numaguchi, S. Morimura, K. Kida, Delftia tsuruhatensis sp. nov.,
    a terephthalate-assimilating bacterium isolated from activated sludge, Syst. Evol. Microbiol., 53 (2019) 1479–1483.