References

  1. Z. Kong, L. Li, Y. Xue, M. Yang, Y.-Y. Li, Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: a review, J. Cleaner Prod., 231 (2019) 913–927.
  2. S.N. Malik, P.C. Ghosh, A.N. Vaidya, S.N. Mudliar, Hybrid ozonation process for industrial wastewater treatment: principles and applications: a review, J. Water Process Eng., 35 (2020) 101193, doi:10.1016/j.jwpe.2020.101193.
  3. X.Q. Pan, Z.P. Gu, W.M. Chen, Q.B. Li, Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: a review, Sci. Total Environ., 754 (2021) 142104, doi:10.1016/j.scitotenv.2020.142104.
  4. M. Belén Carboneras, J. Villaseñor, F. Jesús Fernández-Morales, M. Andrés Rodrigo, P. Cañizares, Biological treatment of wastewater polluted with an oxyfluorfen-based commercial herbicide, Chemosphere, 213 (2018) 244–251.
  5. A.A. Voytyuk, E.V. Moskvicheva, D.V. Shchitov, K.V. Katerinin, P.A. Sidyakin, E.Yu. Lykova, Composite-sorbent based on natural mineral and waste of biological treatment of wastewater (effluent), Key Eng. Mater., 736 (2017) 183–186.
  6. M. Makowska, M. Spychała, M. Pawlak, Efficacy and reliability of wastewater treatment technology in small meat plants, Desal. Water Treat., 221 (2021) 1–10.
  7. M. Dinari, F. Atabaki, Z. Pahnavar, R. Soltani, Adsorptive removal properties of bivalent cadmium from aqueous solution using porous poly(N-2-methyl-4-nitrophenyl maleimide-maleic anhydride-methyl methacrylate) terpolymers, J. Environ. Chem. Eng., 8 (2020) 104560, doi: 10.1016/j.jece.2020.104560.
  8. S.M. Huang, M.L. Hu, D. Li, L.P. Wang, C. Zhang, K. Li, Q.Q. He, Fluoride sorption from aqueous solution using Al(OH)3-modified hydroxyapatite nanosheet, Fuel, 279 (2020) 118486, doi: 10.1016/j.fuel.2020.118486.
  9. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, The application of nanomaterial adsorbents for the removal of impurities from water and wastewaters: a review, Desal. Water Treat., 185 (2020) 1–26.
  10. M. Corona-Bautista, A. Picos-Benítez, D. Villaseñor-Basulto, E. Bandala, J.M. Peralta-Hernández, Discoloration of azo dye Brown HT using different advanced oxidation processes, Chemosphere, 267 (2021) 129234, doi:10.1016/j. chemosphere.2020.129234.
  11. J.W. Wang, B. Xiong, L. Miao, S.L. Wang, P.C. Xie, Z.P. Wang, J. Ma, Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole, Appl. Catal., B, 280 (2021) 119422, doi: 10.1016/j.apcatb.2020.119422.
  12. A. Tufail, W.E. Price, M. Mohseni, B.K. Pramanik, F.S.I. Hai, A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: mechanisms, factors, degradation products, and effluent toxicity, J. Water Process Eng., 40 (2021) 101778, doi: 10.1016/j.jwpe.2020.101778.
  13. A. Tawfik, Degradation pathways of 1,4-dioxane in biological and advanced oxidation processes, Desal. Water Treat., 178 (2020) 360–386.
  14. S. Giannakis, K.-Y. Andrew Lin, F. Ghanbari, A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs), Chem. Eng. J., 406 (2021) 127083, doi: 10.1016/j. cej.2020.127083.
  15. S. Khelifi, A. Choukchou-Braham, H.M. Sbihi, M. Azam, S.I. Al-Resayes, F. Ayari, Treatment of textile dyeing wastewater using advanced photo-oxidation processes for decolorization and COD reduction, Desal. Water Treat., 217 (2021) 350–357.
  16. M.M. M’Arimi, C.A. Mecha, A.K. Kiprop, R. Ramkat, Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: review, Renewable Sustainable Energy Rev., 121 (2020) 109669, doi: 10.1016/j.rser.2019.109669.
  17. L. Qin, R. Ru, J.W. Mao, Q. Meng, Z. Fan, X. Li, G.L. Zhang, Assembly of MOFs/polymer hydrogel derived
    Fe3O4-CuO@ hollow carbon spheres for photochemical oxidation: freezing replacement for structural adjustment, Appl. Catal., B, 269 (2020) 118754, doi: 10.1016/j.apcatb.2020.118754.
  18. J. Kozak, M. Wlodarczyk-Makula, Comparison of the PAHs degradation effectiveness using CaO2 or H2O2 under the photo-Fenton reaction, Desal. Water Treat., 134 (2018) 57–64.
  19. C. Chen, T. Cheng, L. Wang, Y. Tian, Q. Deng, Y. Shi, Application of MoO3 as an efficient catalyst for wet air oxidation treatment of pharmaceutical wastewater (Experimental and DFT study), Arch. Environ. Prot., 47 (2021) 47–60.
  20. M. Sabaghi, Z. Aghajani, G.R. Najafi, Fabrication of a new heterogeneous tungstate-based on the
    amino-functionalized metal-organic framework as an efficient catalyst towards sonochemical oxidation of alcohols under green condition, J. Organomet. Chem., 925 (2020) 121483, doi:10.1016/j.jorganchem.2020.121483.
  21. Q.D. Yao, X.L. Ma, H.X. Wang, Y.R. Wang, G.L. Wang, J. Zhang, W.K. Liu, X.L. Wang, J. Yan, Y.L. Li, W.W. Wang, Investigate on the mechanism of HfO2/Si0.7Ge0.3 interface passivation based on low-temperature ozone oxidation and Si-Cap methods, Nanomaterials, 11 (2021) 955, doi: 10.3390/nano11040955.
  22. M. Mehrdadian, S. Khazalpour, A. Amani, M. Jamshidi, Electrochemical oxidation of 4-ethynylaniline: a green electrochemical protocol for the synthesis of diazine compounds, Electrochim. Acta, 381 (2021) 138242, doi:10.1016/j.electacta.2021.138242.
  23. H.Y. Shen, P.J. Sun, X. Meng, J.L. Wang, H.Y. Liu, L.J. Xu, Nanoscale Fe0/Cu0 bimetallic catalysts for Fenton-like oxidation of the mixture of nuclear-grade cationic and anionic exchange resins, Chemosphere, 269 (2021) 128763, doi: 10.1016/j. chemosphere. 2020.128763.
  24. X. Dong, Y.C. Lin, G.L. Ren, Y.Q. Ma, L. Zhao, Catalytic degradation of methylene blue by Fenton-like oxidation of Ce-doped MOF, Colloids Surf., A, 608 (2021) 125578, doi: 10.1016/j.colsurfa.2020.125578.
  25. J. Wu, M. Lin, X.L. Weng, G. Owens, Z.L. Chen, Pre-adsorption and Fenton-like oxidation of mitoxantrone using hybrid green synthesized rGO/Fe nanoparticles, Chem. Eng. J., 408 (2021) 127273, doi:10.1016/j.cej.2020.127273.
  26. D.L. Huang, C.J. Hu, G.M. Zeng, M. Cheng, P.A. Xu, X.M. Gong, R.Z. Wang, W.J. Xue, Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation, Sci. Total Environ., 574 (2017) 1599–1610.
  27. P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, Degradation of dyes from aqueous solution by Fenton processes: a review, Environ. Sci. Pollut. Res., 20 (2013) 2099–2132.
  28. L. Zhang, F. Su, N. Wang, S. Liu, M. Yang, Y.-Z. Wang, D.Q. Huo, T.T. Zhao, Biodegradability enhancement of hydrolyzed polyacrylamide wastewater by a combined Fenton-SBR treatment process, Bioresour. Technol., 278 (2019) 99–107.
  29. J.J. Rueda-Márquez, I. Levchuk, M. Manzano, M. Sillanpää, Toxicity reduction of industrial and municipal wastewater by advanced oxidation processes (photo-Fenton, UVC/H2O2, electro-Fenton and galvanic Fenton): a review, Catalysts, 10 (2020) 612, doi: 10.3390/catal10060612.
  30. W. Du, R. Huang, X.L. Huang, R. Chen, F.X. Chen, Copperpromoted heterogeneous Fenton-like oxidation of Rhodamine B over Fe3O4 magnetic nanocatalysts at mild conditions, Environ. Sci. Pollut. Res., 28 (2021) 19959–19968.
  31. Z.H. Lu, X.F. Cao, H. Wei, W.T. Huo, Q.Q. Wang, K.B. Li, Strong enhancement effect of bisulfite on
    MIL-68(Fe)-catalyzed Fenton-like reaction for organic pollutants degradation, Appl. Surf. Sci., 542 (2021) 148631, doi: 10.1016/j.apsusc.2020.148631.
  32. L. Peng, X.G. Duan, Y.N. Shang, B.Y. Gao, X. Xu, Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways, Appl. Catal., B, 287 (2021) 119963, doi: 10.1016/j. apcatb.2021.119963.
  33. Y.F. Xue, X.G. Gu, S.G. Lu, Z.W. Miao, M.L. Brusseau, M.H. Xu, X.R. Fu, X. Zhang, Z.F. Qiu, Q. Sui, The destruction of benzene by calcium peroxide activated with Fe(II) in water, Chem. Eng. J., 302 (2016) 187–193.
  34. L. Ge, Y. Yue, W. Wang, F.T. Tan, S.H. Zhang, X.Y. Wang, X.L. Qiao, P.K. Wong, Efficient degradation of tetracycline in wide pH range using MgNCN/MgO nanocomposites as novel H2O2 activator, Water Res., 198 (2021) 117149, doi: 10.1016/j. watres.2021.117149.
  35. J. Liu, Y. Yue, W. Wang, F. Tan, H. Xia, X. Wang, X. Qiao, P.K. Wong, Facile one-step synthesis of 3D hierarchical flowerlike magnesium peroxide for efficient and fast removal of tetracycline from aqueous solution, J. Hazard. Mater., 397 (2020) 122877, doi: 10.1016/j.jhazmat.2020.122877.
  36. J. Zhang, P. Chen, W. Gao, W. Wang, F. Tan, X. Wang, X. Qiao, P.K. Wong, Melamine-cyanurate supramolecule induced graphitic N-rich graphene for singlet oxygen-dominated peroxymonosulfate activation to efficiently degrade organic pollutants, Sep. Purif. Technol., 265 (2021) 118474, doi: 10.1016/j. seppur.2021.118474.
  37. M. Cheng, C. Lai, Y. Liu, G. Zeng, D. Huang, C. Zhang, L. Qin, L. Hu, C. Zhou, W. Xiong, Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis, Coord. Chem. Rev., 368 (2018) 80–92.
  38. A.D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  39. Y. Feng, D. Wu, L. Ma, Iron oxide catalyzed Fenton-like reaction, Prog. Chem., 25 (2013) 1219–1228.
  40. Y. Zhu, W.H. Fan, W.Y. Feng, Y. Wang, S. Liu, Z.M. Dong, X.M. Li, A critical review on metal complexes removal from water using methods based on Fenton-like reactions: analysis and comparison of methods and mechanisms, J. Hazard. Mater., 414 (2021) 125517, doi: 10.1016/j.jhazmat.2021.125517.
  41. L. Xin, J. Hu, Y. Xiang, C. Li, L. Fu, Q. Li, X. Wei, Carbonbased nanocomposites as Fenton-like catalysts in wastewater treatment applications: a review, Materials, 14 (2021) 2643, doi: 10.3390/ma14102643.
  42. S. Goel, S.I. Zones, E. Iglesia, Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement, J. Am. Chem. Soc., 136 (2014) 15280–15290.
  43. Z. Wu, S. Goel, M. Choi, E. Iglesia, Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity, J. Catal., 311 (2014) 458–468.
  44. X. Li, E. Iglesia, Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes, Chem. Commun. (Camb), (2008) 594– 596, doi:10.1039/B715543C.
  45. S. Goel, Z. Wu, S.I. Zones, E. Iglesia, Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites, J. Am. Chem. Soc., 134 (2012) 17688–17695.
  46. A. Khataee, T.S. Rad, B. Vahid, S. Khorram, Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process, Ultrason. Sonochem., 33 (2016) 37–46.
  47. L. Singh, P. Rekha, S. Chand, Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye, Sep. Purif. Technol., 170 (2016) 321–336.
  48. N.L. Subbulekshmi, E. Subramanian, Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline, J. Environ. Chem. Eng., 5 (2017) 1360–1371.
  49. Y. Zhang, J. Shang, Y. Song, C. Rong, Y. Wang, W. Huang, K. Yu, Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique, Water Sci. Technol., 75 (2017) 659–669.
  50. Q. Zhang, Q. Wang, S. Wang, Efficient heterogeneous Fentonlike catalysis of Fe-doped SAPO-44 zeolite synthesized from bauxite and rice husk, Chem. Phys. Lett., 753 (2020) 137598, doi:10.1016/j.cplett.2020.137598.
  51. B. Shi, C. Zhao, Y. Ji, J. Shi, H. Yang, Promotion effect of PANI on Fe-PANI/Zeolite as an active and recyclable Fenton-like catalyst under near-neutral condition, Appl. Surf. Sci., 508 (2020) 145298, doi: 10.1016/j.apsusc.2020.145298.
  52. Q. Guo, G. Li, D. Liu, Y. Wei, Synthesis of zeolite Y promoted by Fenton’s reagent and its application in photo-Fenton-like oxidation of phenol, Solid State Sci., 91 (2019) 89–95.
  53. X. Yang, X. Cheng, A.A. Elzatahry, J. Chen, A. Alghamdi, Y. Deng, Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine, highly-dispersed Fe2O3 nanoparticles for removal of organics under mild conditions, Chin. Chem. Lett., 30 (2019) 324–330.
  54. F. Mendez-Arriaga, R. Almanza, Water remediation by UV-Vis/H2O2 process, photo-Fenton-like oxidation, and zeolite ZSM5, Desal. Water Treat., 52 (2014) 5822–5832.
  55. C. Chen, T. Cheng, X. Zhang, R. Wu, Q. Wang, Synthesis of an efficient Pb adsorption nano-crystal under strong alkali hydrothermal environment using a Gemini surfactant as directing agent, J. Chem. Soc. Pak., 41 (2019) 1034–1038.
  56. X. Zhang, T. Cheng, C. Chen, L. Wang, Q. Deng, G. Chen, C. Ye, Synthesis of a novel magnetic nano-zeolite and its application as an efficient heavy metal adsorbent, Mater. Res. Express, 7 (2020) 085007.
  57. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter, 54 (1996) 11169–11186.
  58. P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964) 864–871.
  59. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965) A1133, doi: 10.1103/PhysRev.140.A1133.
  60. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B: Condens. Matter, 46 (1992) 6671–6687.
  61. J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996) 3865–3868.
  62. A. Cabrera-Codony, A. Georgi, R. Gonzalez-Olmos, H. Valdés, M.J. Martín, Zeolites as recyclable adsorbents/catalysts for biogas upgrading: removal of octamethylcyclotetrasiloxane, Chem. Eng. J., 307 (2017) 820–827.
  63. M. Dosa, M. Piumetti, C. Galletti, N. Russo, D. Fino, S. Bensaid, G. Mancini, F.S. Freyria, G. Saracco, A novel
    Fe-containing clinoptilolite for wastewater remediation: degradation of azodyes Acid orange 7 by H2O2 and ascorbic acid, Desal. Water Treat., 159 (2019) 121–129.
  64. A. Changduang, T. Limpiyakorn, P. Punyapalakul, P. Thayanukul, Development of reactive iron-coated natural filter media for treating antibiotic residual in swine wastewater: mechanisms, intermediates and toxicity, J. Environ. Manage., 298 (2021) 113435, doi: 10.1016/j.jenvman.2021.113435.
  65. M. Yue, X. Jiang, H. Zhang, S. Zhang, T. Xue, Y. Li, Quasi-solidphase synthesis of Fe-MFI zeolites by using
    Fe-containing zeolite seed sol for hydroxylation of benzene with H2O2, Microporous Mesoporous Mater., 294 (2020) 109891, doi: 10.1016/j.micromeso.2019.109891.
  66. H. Zhang, Y.F. Fan, Y.H. Huan, M.B. Yue, Dry-gel synthesis of shaped transition-metal-doped M-MFI (M = Ti, Fe, Cr, Ni) zeolites by using metal-occluded zeolite seed sol as a directing agent, Microporous Mesoporous Mater., 231 (2016) 178–185.
  67. M. Mihajlovic, S. Lazarevic, I. Jankovic-Castvan, B. Jokic, D. Janackovic, R. Petrovic, A comparative study of the removal of lead, cadmium and zinc ions from aqueous solutions by natural and Fe(III)-modified zeolite, Chem. Ind. Chem. Eng. Q., 20 (2014) 283–293.
  68. Y. Sun, Q. Fang, J. Dong, X. Cheng, J. Xu, Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(III), Desalination, 277 (2011) 121–127.
  69. T. Cheng, C. Chen, R. Tang, C.H. Han, Y. Tian, Competitive adsorption of Cu, Ni, Pb, and Cd from aqueous solution onto fly ash-based Linde F(K) zeolite, Iran. J. Chem. Chem. Eng., 37 (2018) 61–72.
  70. C. Chen, Q. Li, L. Shen, J. Zhai, Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash, Environ. Technol., 33 (2012) 1313–1321.
  71. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and longlived catalysts, Nature, 461 (2009) 246–249.
  72. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.
  73. J. Liu, Y.M. Yue, L.F. Ge, P. Chen, F.T. Tan, W. Wang, X.Y. Wang, X.L. Qiao, Facile fabrication of magnesium peroxide with different morphologies via the isomorphic transformation of magnesium oxide for Fenton-like degradation of methylene blue, Colloids Surf., A, 607 (2020) 125499, doi: 10.1016/j. colsurfa.2020.125499.
  74. S.J. Zuo, X.M. Jin, X.W. Wang, Y.H. Lu, Q. Zhu, J.W. Wang, W.P. Liu, Y.H. Du, J. Wang, Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values, Appl. Catal., B, 282 (2021) 119551, doi: 10.1016/j. apcatb.2020.119551.
  75. R. Gonzalez-Olmos, M.J. Martin, A. Georgi, F.-D. Kopinke, I. Oller, S. Malato, Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH, Appl. Catal., B, 125 (2012) 51–58.
  76. Y. Gao, S. Li, Y. Li, L. Yao, H. Zhang, Accelerated photocatalytic degradation of organic pollutant over
    metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate, Appl. Catal., B, 202 (2017) 165–174.
  77. T. Guo, L. Jiang, K. Wang, Y. Li, H. Huang, X. Wu, G. Zhang, Efficient persulfate activation by hematite nanocrystals for degradation of organic pollutants under visible light irradiation: facet-dependent catalytic performance and degradation mechanism, Appl. Catal., B, 286 (2021) 119883, doi:10.1016/j.apcatb.2021.119883.
  78. M.L. Rache, A.R. García, H.R. Zea, A.M.T. Silva, L.M. Madeira, J.H. Ramírez, Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst—kinetics with a model based on the Fermi’s equation, Appl. Catal., B, 146 (2014) 192–200.
  79. A. Cihanoğlu, G. Gündüz, M. Dükkancı, Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites, Appl. Catal., B, 165 (2015) 687–699.
  80. M. Dukkanci, G. Gunduz, S. Yilmaz, R.V. Prihod’ko, Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis, J. Hazard. Mater., 181 (2010) 343–350.
  81. K. Rusevova, R. Köferstein, M. Rosell, H.H. Richnow, F.-D. Kopinke, A. Georgi, LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions, Chem. Eng. J., 239 (2014) 322–331.
  82. A.C. Affam, Effect of hydraulic retention time on nutrients and organics removal by FeGAC/H2O2-SBR treatment of pesticide wastewater, Desal. Water Treat., 195 (2020) 297–304.
  83. A. Sheikhmohammadi, E. Asgari, J. Yeganeh, Application of Fe3O4@activated carbon magnetic nanoparticles for the adsorption of metronidazole from wastewater: optimization, kinetics, thermodynamics and equilibrium studies, Desal. Water Treat., 222 (2021) 354–365.
  84. Y.J. Zhang, S.H. Hu, X.H. Mi, R. Zhang, R. Sun, Y.G. Wu, Nitrobenzene removal by novel pillared kaolinite-catalyzed Fenton-like reaction, Desal. Water Treat., 218 (2021) 210–219.
  85. X. Wei, X. Xie, Y. Wang, S. Yang, Shape-dependent Fentonlike catalytic activity of Fe3O4 nanoparticles, J. Environ. Eng., 146 (2020) 04020005, doi: 10.1061/(ASCE)EE.1943-7870.0001648.
  86. G.A. Ashraf, R.T. Rasool, M. Hassan, L. Zhang, Enhanced photo Fenton-like activity by effective and stable Al–Sm M-hexaferrite heterogenous catalyst magnetically detachable for methylene blue degradation, J. Alloys Compd., 821 (2020) 153410, doi: 10.1016/j.jallcom.2019.153410.
  87. X. Wang, Z. Nan, Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism, Sep. Purif. Technol., 233 (2020) 116023, doi: 10.1016/j.seppur.2019.116023.
  88. F.L. Rivera, F.J. Recio, F.J. Palomares, J. Sánchez-Marcos, N. Menéndez, E. Mazarío, P. Herrasti, Fenton-like degradation enhancement of methylene blue dye with magnetic heating induction, J. Electroanal. Chem., 879 (2020) 114773, doi: 10.1016/j.jelechem.2020.114773.
  89. J.-H. Chu, J.-K. Kang, S.-J. Park, C.-G. Lee, Application of magnetic biochar derived from food waste in heterogeneous sono-Fenton-like process for removal of organic dyes from aqueous solution, J. Water Process Eng., 37 (2020) 101455, doi: 10.1016/j.jwpe.2020.101455.
  90. H. Xiang, G. Ren, Y. Zhong, D. Xu, Z. Zhang, X. Wang, X. Yang, Fe3O4@C nanoparticles synthesized by in situ solid-phase method for removal of Methylene blue, Nanomaterials (Basel), 11 (2021) 330, doi:10.3390/nano11020330.
  91. A. Kirchon, P. Zhang, J. Li, E.A. Joseph, W. Chen, H.C. Zhou, Effect of isomorphic metal substitution on the Fenton and photo-Fenton degradation of methylene blue using Fe-based metal–organic frameworks, ACS Appl. Mater. Interfaces, 12 (2020) 9292–9299.
  92. H.A. Bicalho, J.L. Lopez, I. Binatti, P.F.R. Batista, J.D. Ardisson, R.R. Resende, E. Lorençon, Facile synthesis of highly dispersed Fe(II)-doped g-C3N4 and its application in Fenton-like catalysis, Mol. Catal., 435 (2017) 156–165.
  93. A.M. Atta, Y.M. Moustafa, H.A. Al-Lohedan, A.O. Ezzat, A.I. Hashem, Methylene blue catalytic degradation using silver and magnetite nanoparticles functionalized with a poly(ionic liquid) based on quaternized dialkylethanolamine with 2-acrylamido-2-methylpropane sulfonate-co-vinylpyrrolidone, Omega, 5 (2020) 2829–2842.
  94. D. Li, T. Yang, Y. Li, Z. Liu, W. Jiao, Facile and green synthesis of highly dispersed tar-based heterogeneous Fenton catalytic nanoparticles for the degradation of methylene blue, J. Cleaner Prod., 246 (2020) 119033, doi: 10.1016/j.jclepro.2019.119033.
  95. Y. Wu, L. Fan, S. Hu, S. Wang, H. Yao, K. Wang, Role of dissolved iron ions in nanoparticulate zero-valent iron/H2O2 Fenton-like system, Int. J. Environ. Sci. Technol., 16 (2019) 4551–4562.
  96. J. Zhang, W. Gao, Y. Yue, W. Wang, F. Tan, X. Wang, X. Qiao, P.K. Wong, Two-step assembly induced
    Fe0-anchored graphitic N-rich graphene with biactive centers for enhanced heterogeneous peroxymonosulfate activation, J. Mater. Chem. A, 9 (2021) 17366–17379.
  97. M. Qin, B. Lu, S. Feng, Z. Zhen, R. Chen, H. Liu, Role of exposed facets and surface OH groups in the Fenton-like reactivity of lepidocrocite catalyst, Chemosphere, 230 (2019) 286–293.
  98. Y. Chen, Z. Yang, Y.B. Liu, Y. Liu, Fenton-like degradation of sulfamerazine at nearly neutral pH using
    Fe-Cu-CNTs and Al0-CNTs for in-situ generation of H2O2/OH/O2•–, Chem. Eng. J., 396 (2020) 125329, doi:10.1016/j.cej.2020.125329.
  99. Z. Dong, C. Jiang, Q. Guo, J. Li, X. Wang, Z. Wang, J. Jiang, A novel diagnostic method for distinguishing between Fe(IV) and •OH by using atrazine as a probe: clarifying the nature of reactive intermediates formed by nitrilotriacetic acid assisted Fenton-like reaction, J. Hazard. Mater., 417 (2021) 126030, doi:10.1016/j.jhazmat.2021.126030.
  100. W.H. Feng, J. Yuan, L.L. Zhang, W.T. Hu, Z.H. Wu, X.L. Wang, X.Y. Huang, P. Liu, S.Y. Zhang, Atomically thin ZnS nanosheets: facile synthesis and superior piezocatalytic H2 production from pure H2O, Appl. Catal., B, 277 (2020) 119250, doi: 10.1016/j. apcatb.2020.119250.
  101. L. Duan, G. Li, S. Zhang, H. Wang, Y. Zhao, Y. Zhang, Sulfurdoped photocatalysts with iron-nitrogen coordination bonds by modifying graphitic carbon nitride obtained from ammonium thiocyanate pyrolysis with ferrous sulfate heptahydrate in ethanol, Opt. Mater., 118 (2021) 111222, doi:10.1016/j.optmat.2021.111222.
  102. Z. Wang, L. Jiang, K. Wang, Y. Li, G. Zhang, Novel AgI/BiSbO4 heterojunction for efficient photocatalytic degradation of organic pollutants under visible light: interfacial electron transfer pathway, DFT calculation and degradation mechanism study, J. Hazard. Mater., 410 (2021) 124948, doi:10.1016/j.jhazmat.2020.124948.
  103. H. Huang, T. Guo, K. Wang, Y. Li, G. Zhang, Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water, Sci. Total Environ., 758 (2021) 143957, doi: 10.1016/j. scitotenv.2020.143957.