References
- C. Song, Global challenges and strategies for control, conversion
and utilization of CO2 for sustainable development involving
energy, catalysis, adsorption and chemical processing,
Catal. Today, 115 (2006) 2–32.
- S. Babamohammadi, A. Shamiri, M.K. Aroua, A review of
CO2 capture by absorption in ionic liquid-based solvents,
Rev. Chem. Eng., 31 (2015), doi: 10.1515/revce-2014-0032.
- A. Kiani, K. Jiang, P. Feron, Techno-economic assessment
for CO2 capture from air using a conventional liquid-based
absorption process, Front. Energy Res., 8 (2020) 92, doi: 10.3389/
fenrg.2020.00092.
- F. Ahmad, K.K. Lau, A.M. Shariff, G. Murshid, Process
simulation and optimal design of membrane separation
system for CO2 capture from natural gas, Comput. Chem. Eng.,
36 (2012) 119–128.
- M. Muhammad, Y.F. Yeong, K.K. Lau, A.B.M. Shariff, Issues
and challenges in the development of deca-dodecasil 3
rhombohedral membrane in CO2 capture from natural gas,
Sep. Purif. Methods, 44 (2015) 331–340.
- D.S. Dao, H. Yamada, K. Yogo, Enhancement of CO2
adsorption/desorption properties of solid sorbents using
tetraethylenepentamine/diethanolamine blends, ACS Omega,
5 (2020) 23533–23541.
- M. Alfe, A. Policicchio, L. Lisi, V. Gargiulo, Solid sorbents for
CO2 and CH4 adsorption: the effect of metal organic framework
hybridization with graphene-like layers on the gas sorption
capacities at high pressure, Renewable Sustainable Energy Rev.,
141 (2021) 110816, doi: 10.1016/j.rser.2021.110816.
- Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid
adsorbents and their applications: current status and new
trends, Energy Environ. Sci., 4 (2010) 42–55.
- F. Sher, S.Z. Iqbal, S. Albazzaz, U. Ali, D.A. Mortari, T. Rashid,
Development of biomass derived highly porous fast adsorbents
for post-combustion CO2 capture, Fuel, 282 (2020) 118506, doi:
10.1016/j.fuel.2020.118506.
- E. Davarpanah, M. Armandi, S. Hernández, D. Fino,
R. Arletti, S. Bensaid, M. Piumetti, CO2 capture on natural
zeolite clinoptilolite: effect of temperature and role of the
adsorption sites, J. Environ. Manage., 275 (2020) 111229,
doi: 10.1016/j.jenvman.2020.111229.
- T.M. Albayati, A.M. Doyle, Shape-selective adsorption of
substituted aniline pollutants from wastewater, Adsorpt. Sci.
Technol., 31 (2013) 459–468.
- J.-Y. Jung, H.-R. Yu, S.-J. In, Y.C. Choi, Y.-S. Lee, Water vapor
adsorption capacity of thermally fluorinated carbon molecular
sieves for CO2 capture, J. Nanomater., 2013 (2013) 705107,
doi: 10.1155/2013/705107.
- X. Ma, X. Wang, C. Song, “Molecular Basket” sorbents for
separation of CO2 and H2S from various gas streams, J. Am.
Chem. Soc., 131 (2009) 5777–5783.
- F. Fashi, A. Ghaemi, P. Moradi, Piperazine‐modified activated
alumina as a novel promising candidate for CO2 capture:
experimental and modeling, Greenhouse Gases Sci. Technol.,
9 (2019) 37–51.
- K. Wang, H. Shang, L. Li, X. Yan, Z. Yan, C. Liu, Q. Zha,
Efficient CO2 capture on low-cost silica gel modified by
polyethyleneimine, J. Nat. Gas Chem., 21 (2012) 319–323.
- J. Wang, Q. Pu, P. Ning, S. Lu, Activated carbon‐based
composites for capturing CO2: a review, Greenhouse Gases Sci.
Technol., 9 (2021) 377–393.
- E.H. Khader, T.J. Mohammed, T.M. Albayati, Comparative
performance between rice husk and granular activated carbon
for the removal of azo tartrazine dye from aqueous solution,
Desal. Water Treat., 229 (2021) 372–383.
- H.-M. Wen, C. Liao, L. Li, A. Alsalme, Z.A. Alothman,
R. Krishna, H. Wu, W. Zhou, J. Hu, B. Chen, A metal–organic
framework with suitable pore size and dual functionalities
for highly efficient post-combustion CO2 capture, J. Mater.
Chem. A, 7 (2019) 3128–3134.
- K. Kumar, A. Kumar, Enhanced CO2 adsorption and separation
in ionic-liquid-impregnated mesoporous silica MCM-41:
a molecular simulation study, J. Phys. Chem. C, 122 (2018)
8216–8227.
- H. Du, L. Ma, X. Liu, F. Zhang, X. Yang, Y. Wu, J. Zhang,
A novel mesoporous SiO2 material with MCM-41 structure from
coal gangue: preparation, ethylenediamine modification, and
adsorption properties for CO2 capture, Energy Fuels, 32 (2018)
5374–5385.
- T.M. Albayati, S.E. Wilkinson, A.A. Garforth, A.M. Doyle,
Heterogeneous alkane reactions over nanoporous catalysts,
Transport Porous Media, 104 (2014) 315–333.
- T.M. Albayati, A.M. Doyle, Erratum to: encapsulated
heterogeneous base catalysts onto SBA-15 nanoporous material
as highly active catalysts in the transesterification of sunflower
oil to biodiesel, J. Nanopart. Res., 17 (2015) 1–10, doi: 10.1007/
s11051-015-2991-8.
- T.M. Albayati, I.K. Salih, H.F. Alazzawi, Synthesis and
characterization of a modified surface of SBA-15 mesoporous
silica for a chloramphenicol drug delivery system, Heliyon,
5 (2019) e02539, doi:10.1016/j.heliyon.2019.e02539.
- S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, A hybrid adsorption
membrane process for removal of dye from synthetic and actual
wastewater, Chem. Eng. Process. Process Intensif., 157 (2020)
108113, doi: 10.1016/j.cep.2020.108113.
- S.M. Alardhi, J.M. Alrubaye, T.M. Albayati, Adsorption of
Methyl Green dye onto MCM-41: equilibrium, kinetics and
thermodynamic studies, Desal. Water Treat., 179 (2020) 323–331.
- S. Reiser, M. Türk, Influence of temperature and high-pressure
on the adsorption behavior of Sc CO2 on
MCM-41 and SBA-15,
J. Supercrit. Fluids, 144 (2019) 122–133.
- A. Sharma, J. Jindal, A. Mittal, K. Kumari, N. Kumar, Carbon
materials as CO2 adsorbents: a review, Environ. Chem. Lett.,
19 (2021), doi: 10.1007/s10311-020-01153-z.
- D. Bahamon, W. Anlu, S. Builes, M. Khaleel, L.F. Vega, Effect of
amine functionalization of MOF adsorbents for enhanced CO2
capture and separation: a molecular simulation study, Front.
Chem., 8 (2021), doi:10.3389/fchem.2020.574622.
- J.W. Wei., L. Liao, Y. Xiao, P. Zhang, Y. Shi, Capture of carbon
dioxide by amine-impregnated as-synthesized MCM-41,
J. Environ. Sci., 22 (2010) 1558–1563.
- Z.-L. Liu, Y. Teng, K. Zhang, Y. Cao, W.-P. Pan, CO2 adsorption
properties and thermal stability of different amine-impregnated
MCM-41 materials, J. Fuel Chem. Technol., 41 (2013) 469–475.
- N. Rao, M. Wang, Z.M. Shang, Y.W. Hou, G.Z. Fan, J.F. Li, CO2
adsorption by amine-functionalized MCM-41: a comparison
between impregnation and grafting modification methods,
Energy Fuels, 32 (2017) 670–677.
- S. Kim, J. Ida, V.V. Guliants, J.Y.S. Lin, Tailoring pore properties
of MCM-48 silica for selective adsorption of CO2, J. Phys.
Chem. B, 109 (2005) 6287–6293.
- H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Amine-grafted
MCM-48 and silica xerogel as superior sorbents for acidic gas
removal from natural gas, Ind. Eng. Chem. Res., 42 (2003)
2427–2433.
- X. Wang, L. Chen, Q. Guo, Development of hybrid aminefunctionalized
MCM-41 sorbents for CO2 capture, Chem.
Eng. J., 260 (2015) 573–581.
- H.L. Zhao, J. Hu, J.J. Wang, L.H. Zhou, H.L. Liu, CO2 capture by
the amine-modified mesoporous materials, Acta Phys. Chim.
Sin., 23 (2007) 801–806.
- J. Wang, H. Chen, H. Zhou, X. Liu, W. Qiao, D. Long, L. Ling,
Carbon dioxide capture using polyethylenimine-loaded
mesoporous carbon, J. Environ. Sci., 25 (2013) 124–132.
- X. Wang, X. Ma, C. Song, D.R. Locke, S. Siefert, R.E. Winans,
J. Möllmer, M. Lange, A. Möller, R. Gläser, Molecular basket
sorbents polyethylenimine–SBA-15 for CO2 capture from flue
gas: characterization and sorption properties, Microporous
Mesoporous Mater., 169 (2013) 103–111.
- S. Rattanaphan, T. Rungrotmongkol, P. Kongsune, Biogas
improving by adsorption of CO2 on modified waste tea
activated carbon, Renewable Energy, 145 (2020) 622–631.
- N.A. Rashidi, S. Yusup, Potential of palm kernel shell as
activated carbon precursors through single stage activation
technique for carbon dioxide adsorption, J. Cleaner Prod.,
168 (2017) 474–486.M