References

  1. C. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today, 115 (2006) 2–32.
  2. S. Babamohammadi, A. Shamiri, M.K. Aroua, A review of CO2 capture by absorption in ionic liquid-based solvents, Rev. Chem. Eng., 31 (2015), doi: 10.1515/revce-2014-0032.
  3. A. Kiani, K. Jiang, P. Feron, Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process, Front. Energy Res., 8 (2020) 92, doi: 10.3389/ fenrg.2020.00092.
  4. F. Ahmad, K.K. Lau, A.M. Shariff, G. Murshid, Process simulation and optimal design of membrane separation system for CO2 capture from natural gas, Comput. Chem. Eng., 36 (2012) 119–128.
  5. M. Muhammad, Y.F. Yeong, K.K. Lau, A.B.M. Shariff, Issues and challenges in the development of deca-dodecasil 3 rhombohedral membrane in CO2 capture from natural gas, Sep. Purif. Methods, 44 (2015) 331–340.
  6. D.S. Dao, H. Yamada, K. Yogo, Enhancement of CO2 adsorption/desorption properties of solid sorbents using tetraethylenepentamine/diethanolamine blends, ACS Omega, 5 (2020) 23533–23541.
  7. M. Alfe, A. Policicchio, L. Lisi, V. Gargiulo, Solid sorbents for CO2 and CH4 adsorption: the effect of metal organic framework hybridization with graphene-like layers on the gas sorption capacities at high pressure, Renewable Sustainable Energy Rev., 141 (2021) 110816, doi: 10.1016/j.rser.2021.110816.
  8. Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications: current status and new trends, Energy Environ. Sci., 4 (2010) 42–55.
  9. F. Sher, S.Z. Iqbal, S. Albazzaz, U. Ali, D.A. Mortari, T. Rashid, Development of biomass derived highly porous fast adsorbents for post-combustion CO2 capture, Fuel, 282 (2020) 118506, doi: 10.1016/j.fuel.2020.118506.
  10. E. Davarpanah, M. Armandi, S. Hernández, D. Fino, R. Arletti, S. Bensaid, M. Piumetti, CO2 capture on natural zeolite clinoptilolite: effect of temperature and role of the adsorption sites, J. Environ. Manage., 275 (2020) 111229, doi: 10.1016/j.jenvman.2020.111229.
  11. T.M. Albayati, A.M. Doyle, Shape-selective adsorption of substituted aniline pollutants from wastewater, Adsorpt. Sci. Technol., 31 (2013) 459–468.
  12. J.-Y. Jung, H.-R. Yu, S.-J. In, Y.C. Choi, Y.-S. Lee, Water vapor adsorption capacity of thermally fluorinated carbon molecular sieves for CO2 capture, J. Nanomater., 2013 (2013) 705107, doi: 10.1155/2013/705107.
  13. X. Ma, X. Wang, C. Song, “Molecular Basket” sorbents for separation of CO2 and H2S from various gas streams, J. Am. Chem. Soc., 131 (2009) 5777–5783.
  14. F. Fashi, A. Ghaemi, P. Moradi, Piperazine‐modified activated alumina as a novel promising candidate for CO2 capture: experimental and modeling, Greenhouse Gases Sci. Technol., 9 (2019) 37–51.
  15. K. Wang, H. Shang, L. Li, X. Yan, Z. Yan, C. Liu, Q. Zha, Efficient CO2 capture on low-cost silica gel modified by polyethyleneimine, J. Nat. Gas Chem., 21 (2012) 319–323.
  16. J. Wang, Q. Pu, P. Ning, S. Lu, Activated carbon‐based composites for capturing CO2: a review, Greenhouse Gases Sci. Technol., 9 (2021) 377–393.
  17. E.H. Khader, T.J. Mohammed, T.M. Albayati, Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution, Desal. Water Treat., 229 (2021) 372–383.
  18. H.-M. Wen, C. Liao, L. Li, A. Alsalme, Z.A. Alothman, R. Krishna, H. Wu, W. Zhou, J. Hu, B. Chen, A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture, J. Mater. Chem. A, 7 (2019) 3128–3134.
  19. K. Kumar, A. Kumar, Enhanced CO2 adsorption and separation in ionic-liquid-impregnated mesoporous silica MCM-41: a molecular simulation study, J. Phys. Chem. C, 122 (2018) 8216–8227.
  20. H. Du, L. Ma, X. Liu, F. Zhang, X. Yang, Y. Wu, J. Zhang, A novel mesoporous SiO2 material with MCM-41 structure from coal gangue: preparation, ethylenediamine modification, and adsorption properties for CO2 capture, Energy Fuels, 32 (2018) 5374–5385.
  21. T.M. Albayati, S.E. Wilkinson, A.A. Garforth, A.M. Doyle, Heterogeneous alkane reactions over nanoporous catalysts, Transport Porous Media, 104 (2014) 315–333.
  22. T.M. Albayati, A.M. Doyle, Erratum to: encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel, J. Nanopart. Res., 17 (2015) 1–10, doi: 10.1007/ s11051-015-2991-8.
  23. T.M. Albayati, I.K. Salih, H.F. Alazzawi, Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system, Heliyon, 5 (2019) e02539, doi:10.1016/j.heliyon.2019.e02539.
  24. S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater, Chem. Eng. Process. Process Intensif., 157 (2020) 108113, doi: 10.1016/j.cep.2020.108113.
  25. S.M. Alardhi, J.M. Alrubaye, T.M. Albayati, Adsorption of Methyl Green dye onto MCM-41: equilibrium, kinetics and thermodynamic studies, Desal. Water Treat., 179 (2020) 323–331.
  26. S. Reiser, M. Türk, Influence of temperature and high-pressure on the adsorption behavior of Sc CO2 on
    MCM-41 and SBA-15, J. Supercrit. Fluids, 144 (2019) 122–133.
  27. A. Sharma, J. Jindal, A. Mittal, K. Kumari, N. Kumar, Carbon materials as CO2 adsorbents: a review, Environ. Chem. Lett., 19 (2021), doi: 10.1007/s10311-020-01153-z.
  28. D. Bahamon, W. Anlu, S. Builes, M. Khaleel, L.F. Vega, Effect of amine functionalization of MOF adsorbents for enhanced CO2 capture and separation: a molecular simulation study, Front. Chem., 8 (2021), doi:10.3389/fchem.2020.574622.
  29. J.W. Wei., L. Liao, Y. Xiao, P. Zhang, Y. Shi, Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41, J. Environ. Sci., 22 (2010) 1558–1563.
  30. Z.-L. Liu, Y. Teng, K. Zhang, Y. Cao, W.-P. Pan, CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials, J. Fuel Chem. Technol., 41 (2013) 469–475.
  31. N. Rao, M. Wang, Z.M. Shang, Y.W. Hou, G.Z. Fan, J.F. Li, CO2 adsorption by amine-functionalized MCM-41: a comparison between impregnation and grafting modification methods, Energy Fuels, 32 (2017) 670–677.
  32. S. Kim, J. Ida, V.V. Guliants, J.Y.S. Lin, Tailoring pore properties of MCM-48 silica for selective adsorption of CO2, J. Phys. Chem. B, 109 (2005) 6287–6293.
  33. H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 42 (2003) 2427–2433.
  34. X. Wang, L. Chen, Q. Guo, Development of hybrid aminefunctionalized MCM-41 sorbents for CO2 capture, Chem. Eng. J., 260 (2015) 573–581.
  35. H.L. Zhao, J. Hu, J.J. Wang, L.H. Zhou, H.L. Liu, CO2 capture by the amine-modified mesoporous materials, Acta Phys. Chim. Sin., 23 (2007) 801–806.
  36. J. Wang, H. Chen, H. Zhou, X. Liu, W. Qiao, D. Long, L. Ling, Carbon dioxide capture using polyethylenimine-loaded mesoporous carbon, J. Environ. Sci., 25 (2013) 124–132.
  37. X. Wang, X. Ma, C. Song, D.R. Locke, S. Siefert, R.E. Winans, J. Möllmer, M. Lange, A. Möller, R. Gläser, Molecular basket sorbents polyethylenimine–SBA-15 for CO2 capture from flue gas: characterization and sorption properties, Microporous Mesoporous Mater., 169 (2013) 103–111.
  38. S. Rattanaphan, T. Rungrotmongkol, P. Kongsune, Biogas improving by adsorption of CO2 on modified waste tea activated carbon, Renewable Energy, 145 (2020) 622–631.
  39. N.A. Rashidi, S. Yusup, Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption, J. Cleaner Prod., 168 (2017) 474–486.M