References
- K. Ravindra, L. Bencs, R. Van Grieken, Platinum group elements
in the environment and their health risk, Sci. Total Environ.,
318 (2004) 1–43.
- Y. Lu, L. Doan, A. Bafana, G. Yu, C. Jeffryes, T. Benson, S. Wei,
E.K. Wujcik, Chapter 6 – Multifunctional Nanocomposite
Sensors for Environmental Monitoring, K. Song, C. Liu,
J.Z. Guo, Ed., Polymer-Based Multifunctional Nanocomposites
and Their Applications, Elsevier Inc., Amsterdam, 2018,
pp. 157–174.
- S. Karim, Y.-P. Ting, Recycling pathways for platinum
group metals from spent automotive catalyst: a review
on conventional approaches and bio-processes, Resour.
Conserv. Recycl., 170 (2021) 105588, doi: 10.1016/j.
resconrec.2021.105588.
- World Health Organization, Inorganic Pollutants, F. Theakston,
Ed., Air Qual. Guidel. Eur., 2nd ed., WHO Regional Publications,
European Series, Europe, 2000, pp. 1–273.
- Z.E. Gagnon, C. Newkirk, S. Hicks, Impact of platinum group
metals on the environment: a toxicological, genotoxic and
analytical chemistry study, J. Environ. Sci. Health. Part A Toxic/
Hazard. Subst. Environ. Eng., 41 (2006) 397–414.
- S. Shar, F. Reith, E. Shahsavari, E.M. Adetutu, Y. Nurulita,
K. Al-hothaly, N. Haleyur, A.S. Ball, Biomineralization of
platinum by Escherichia coli, Metals (Basel), 9 (2019) 407,
doi: 10.3390/met9040407.
- H. Yesil, A.E. Tugtas, Removal of heavy metals from leaching
effluents of sewage sludge via supported liquid membranes,
Sci. Total Environ., 693 (2019) 133608, doi: 10.1016/j.
scitotenv.2019.133608.
- Science Communication Unit, Tackling Mercury Pollution in
the EU and Worldwide, Bristol, 2017.
- S. Kumbhaj, V. Prabhu, A.V. Patwardhan, Studies in solvent
extraction and supported liquid membrane for platinum
recovery from chloride media by tris(2-ethylhexyl) phosphate,
Indian Chem. Eng., 61 (2019) 15–27.
- A.A. Muleja, Adsorption of platinum ion from “aged” aqueous
solution: application and comparative study between purified
MWCNTs and triphenylphosphine MWCNTs, Environ. Sci.
Pollut. Res., 25 (2018) 20032–20047.
- Y.-S. Jun, Y.S. Huh, H.S. Park, A. Thomas, S.J. Jeon, E.Z. Lee,
H.J. Won, W.H. Hong, S.Y. Lee, Y.K. Hong, Adsorption of
pyruvic and succinic acid by amine-functionalized SBA-15
for the purification of succinic acid from fermentation broth,
J. Phys. Chem., 111 (2007) 13076–13086.
- M.I. Aly, B.A. Masry, J.A. Daoud, Liquid-liquid extraction of
platinum(IV) from acidic nitrate medium using a commercial
trialkyl phosphine oxide in kerosene, Sep. Sci. Technol.,
56 (2021) 2596–2608.
- A.E. Tugtas, Fermentative organic acid production and
separation, Fen Bilim. Derg., 23 (2011) 70–78.
- M. Amini, A. Rahbar-Kelishami, M. Alipour, O. Vahidi,
Supported liquid membrane in metal ion separation:
an
overview, J. Membr. Sci. Res., 4 (2018) 121–135.
- R.W. Baker, Membrane Technology and Applications,
John Wiley & Sons, Ltd., Chichester, UK, 2004.
- J. Ren, R. Wang, Membrane and Desalination Technologies,
L.K. Wang, J.P. Chen, Y.-T. Hung, N.K. Shammas, Eds., 1st ed.,
Springer Science & Business Media, New York, USA, 2011, p. 716.
- H. Ur Rehman, G. Akhtar, H. Ur Rashid, N. Ali, I. Ahmad,
S. Ur Rehman, K. Khan, M. Arshad, Transport of Zn(II) by
TDDA-polypropylene supported liquid membranes and
recovery from waste discharge liquor of galvanizing plant of
Zn(II), J. Chem., 2017 (2017) 7569354, doi: 10.1155/2017/7569354.
- R.N. Raja Sulaiman, N. Othman, Synergetic facilitated transport
of nickel via supported liquid membrane process by a mixture
of di (2-ethylhexyl) phosphoric acid and n-octanol: kinetic
permeation study and approach for a green process, Chem.
Eng. Process. Process Intensif., 134 (2018) 9–19.
- K. Chakrabarty, P. Saha, A.K. Ghoshal, Separation of mercury from
its aqueous solution through supported liquid membrane using
environmentally benign diluent, J. Membr. Sci., 350 (2010) 395–401.
- K. Wongkaew, V. Mohdee, U. Pancharoen, A. Arpornwichanop,
A.W. Lothongkum, Separation of platinum(IV) across hollow
fiber supported liquid membrane using non-toxic diluents:
mass transfer and thermodynamics, J. Ind. Eng. Chem.,
54 (2017) 278–289.
- G. Arslan, A. Tor, Y. Cengeloglu, M. Ersoz, Facilitated transport
of Cr(III) through activated composite membrane containing
di-(2-ethylhexyl)phosphoric acid (DEHPA) as carrier agent,
J. Hazard. Mater., 165 (2009) 729–735.
- H. Zheng, J. Chen, B. Wang, S. Zhao, Recovery of copper ions
from wastewater by hollow fiber supported emulsion liquid
membrane, Chin. J. Chem. Eng., 21 (2013) 827–834.
- M.S. Manna, P. Saha, A.K. Ghoshal, Studies on the stability
of a supported liquid membrane and its cleaning protocol,
RSC Adv., 5 (2015) 71999–72008.
- N. Harruddin, S.M. Saufi, C.K.M. Faizal, A.W. Mohammad,
Removal of acetic acid from aqueous solution by
polyethersulfone supported liquid membrane, Chem. Eng.
Trans., 56 (2017) 847–852.
- V. Rajendaren, S.M. Saufi, M.A.K. Zahari, A.W. Mohammad,
Carrier selection in liquid membrane for extraction of levulinic
acid using hybrid graphene-polyethersulfone supported liquid
membrane, Mater. Today:. Proc., 17 (2019) 1117–1125.
- S.B. Jadhav, C.K. Kumar, R. Bandichhor, P.N. Bhosale,
Development of RP UPLC-TOF/MS, stability indicating method
for omeprazole and its related substances by applying two
level factorial design; and identification and synthesis of nonpharmacopoeial
impurities, J. Pharm. Biomed. Anal., 118 (2016)
370–379.
- K. Wongkaew, T. Wannachod, V. Mohdee, U. Pancharoen,
A. Arpornwichanop, A.W. Lothongkum, Mass transfer
resistance and response surface methodology for separation of
platinum(IV) across hollow fiber supported liquid membrane,
J. Ind. Eng. Chem., 42 (2016) 23–35.
- V. Rajendaren, S.M. Saufi, M.A.K. Zahari, A.W. Mohammad,
Study on stripping phase conditions on the levulinic acid
extraction using supported liquid membrane, J. Mech. Eng. Sci.,
13 (2019) 5625–5636.
- S. Altin, M. Ozguven, Effect of carrier-solvent combination
and stripping solutions on zinc transport by supported liquid
membrane, Fresenius Environ. Bull., 20 (2011) 631–638.
- N.A. Aris, N.F.M. Idrus, L.N. Yian, Z. Idham, M.S.H. Ruslan,
M.A.C. Yunus, The effect of fluid flow rate and extraction time
in supercritical carbon dioxide, J. Adv. Res. Appl. Sci. Eng.
Technol., 16 (2019) 26–34.