References

  1. A. El-Naggar, N. Ahmed, A.A. Mosa, N.K. Niazi, B. Yousaf, A. Sharma, B. Sarkar, Y. Cai, S.X. Chang, Nickel in soil and water: sources, biogeochemistry, and remediation using biochar, J. Hazard. Mater., 419 (2021) 126421, doi: 10.1016/j.jhazmat.2021.126421.
  2. Md.S. Alam, D. Gorman-Lewis, C. Ning, S.L. Flynn, S.O. Yong, K.O. Konhauser, D.S. Alessi, Thermodynamic analysis of nickel(II) and zinc(II) adsorption to biochar, Environ. Sci. Technol., 52 (2018) 6246–6255.
  3. Z. Shen, Y. Zhang, O. McMillan, F. Jin, A. Al-Tabbaa, Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk, Environ. Sci. Pollut. Res., 24 (2017) 12809–12819.
  4. E. Singh, A. Kumar, R. Mishra, S. You, L. Singh, S. Kumar, R. Kumar, Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution, Bioresour. Technol., 320 (2020) 124278, doi: 10.1016/j.biortech.2020.124278.
  5. G.D. Sheng, C.C. Huang, G.H. Chen, S. Jiang, X.M. Ren, B.W. Hu, J.Y. Ma, X.K. Wang, Y.Y. Huang, A. Alsaedi, T. Hayat, Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: a spectroscopic and microscopic investigation, Environ. Pollut., 233 (2018) 125–131.
  6. R.-N. Mourgela, P. Regkouzas, F.-M. Pellera, E. Diamadopoulos, Ni(II) adsorption on biochars produced from different types of biomass, Water Air Soil Pollut., 231 (2020) 1–16, doi: 10.1007/s11270-020-04591-1.
  7. Z. Mahdi, A.E. Hanandeh, Q.J. Yu, Electro-assisted adsorption of heavy metals from aqueous solutions by biochar, Water Sci. Technol., 81 (2020) 801–812.
  8. H. Liu, S. Liang, J.H. Gao, H.H. Ngo, W.S. Guo, Z.Z. Guo, Y.R. Li, Development of biochars from pyrolysis of lotus stalks for Ni(II) sorption: Using zinc borate as flame retardant, J. Anal. Appl. Pyrolysis, 107 (2014) 336–341.
  9. A. El Hanandeh, Z. Mahdi, M.S. Imtiaz, Modelling of the adsorption of Pb, Cu and Ni ions from single and multicomponent aqueous solutions by date seed derived biochar: comparison of six machine learning approaches, Environ. Res., 192 (2021) 110338, doi: 10.1016/j.envres.2020.110338.
  10. N. Esfandiar, R. Suri, E.R. Mckenzie, Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five lowcost sorbents; effects of co-contaminants, humic acid, salinity and pH, J. Hazard. Mater., 423 (2021) 126938, doi: 10.1016/j. jhazmat.2021.126938.
  11. L.J. Dong, W.S. Linghu, D.L. Zhao, Y.Y. Mou, B.W. Hu, A.M. Asiri, K.A. Alamry, D. Xu, J. Wang, Performance of biochar derived from rice straw for removal of Ni(II) in batch experiments, Water Sci. Technol., 2017 (2018) 824–834.
  12. M.T. Amin, A.A. Alazba, M. Shafiq, Comparative sorption of nickel from an aqueous solution using biochar derived from banana and orange peel using a batch system: kinetic and isotherm models, Arabian J. Sci. Eng., 44 (2019) 10105–10116.
  13. S.J. Yu, H.W. Pang, S.Y. Huang, H. Tang, S.Q. Wang, M.Q. Qiu, Z.S. Chen, H. Yang, G. Song, D. Fu, B.W. Hu, X.X. Wang, Recent advances in metal-organic framework membranes for water treatment: a review, Sci. Total Environ., 800 (2021) 149662, doi: 10.1016/j.scitotenv.2021.149662.
  14. U. Ali, M. Shaaban, S. Bashir, R.L. Gao, Q.L. Fu, J. Zhu, H.Q. Hu, Rice straw, biochar and calcite incorporation enhance nickel (Ni) immobilization in contaminated soil and Ni removal capacity, Chemosphere, 244 (2020) 125418, doi: 10.1016/j. chemosphere.2019.125418.
  15. S. Biswas, B.C. Meikap, T.K. Sen, Adsorptive removal of aqueous phase copper (Cu2+) and nickel (Ni2+) metal ions by synthesized biochar–biopolymeric hybrid adsorbents and process optimization by response surface methodology (RSM), Water Air Soil Pollut., 230 (2019) 197–220.
  16. X.L. Hu, Y.W. Xue, L.N. Liu, Y.F. Zeng, L. Long, Preparation and characterization of Na2S-modified biochar for nickel removal, Environ. Sci. Pollut. Res., 25 (2018) 9887–9895.
  17. L.P. Liang, F.F. Xi, W.S. Tan, X. Meng, B.W. Hu, X.K. Wang, Review of organic and inorganic pollutants removal by biochar and biochar-based composites, Biochar, 3 (2021) 255–281.
  18. M.Q. Qiu, B.W. Hu, Z.S. Chen, H. Yang, L. Zhuang, X.K. Wang, Challenges of organic pollutant photocatalysis by biochar based catalysts, Biochar, 3 (2021) 117–123.
  19. A.D. Zand, M.R. Abyaneh, Equilibrium and kinetic studies in remediation of heavy metals in landfill leachate using woodderived biochar, Desal. Water Treat., 141 (2019) 279–300.
  20. Z. Mahdi, Q.J. Yu, A.E. Hanandeh, Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar, J. Environ. Chem. Eng., 6 (2018) 1171–1181.
  21. S. Zhang, J.Q. Wang, Y. Zhang, J.Z. Ma, L.T.Y. Huang, S.J. Yu, L. Chen, G. Song, M.Q. Qiu, X.X. Wang, Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review, Environ. Pollut., 291 (2021) 118076, doi: 10.1016/j.envpol.2021.118076.
  22. R. Wahi, N.F.Q. Zuhaidi, Y. Yusof, J. Jamel, D. Kanakaraju, Z. Ngaini, Chemically treated microwave-derived biochar: an overview, Biomass Bioenergy, 107 (2017) 411–421.
  23. J. Zhang, N. Zhang, F.M.G. Tack, S. Sato, D.S. Alessi, P. Oleszczuk, H. Wang, X. Wang, S.S. Wang, Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: a review,
    J. Hazard. Mater., 418 (2021) 126266, doi: 10.1016/j.jhazmat.2021.126266.
  24. L. Yang, L.Y. He, J.M. Xue, L. Wu, Z.L. Zhang, Highly efficient nickel(II) removal by sewage sludge biochar supported α-Fe2O3 and α-FeOOH: sorption characteristics and mechanisms, PLoS One, 14 (2019) e0218114, doi: 10.1371/journal.pone.0218114.
  25. R.H. Chang, S.P. Sohi, F.Q. Jing, Y.Y. Liu, J.W. Chen, A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation, Environ. Pollut., 254 (2020) 113123, doi: 10.1016/j.envpol.2019.113123.
  26. J. Ifthikar, J. Wang, Q.L. Wang, T. Wang, H.B. Wang, A. Khan, A. Jawad, T.T. Sun, X. Jiao, Z.Q. Chen, Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications, Bioresour. Technol., 238 (2017) 399–406.
  27. W.J. Yin, W. Zhang, C.C. Zhao, J.T. Xu, Evaluation of removal efficiency of Ni(II) and 2,4-DCP using in situ nitrogen-doped biochar modified with aquatic animal waste, ACS Omega, 4 (2019) 19366–19374.
  28. H.H. Lyu, B. Gao, F. He, A.R. Zimmerman, C. Ding, H. Huang, J.C. Tang, Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms, Environ. Pollut., 233 (2018) 54–63.
  29. A.A. Mosa, A. El-Ghamry, H. Al-Zahrani, E.M. Selim, A. El-Khateeb, Chemically modified biochar derived from cotton stalks: characterization and assessing its potential for heavy metals removal from wastewater, Environ. Biodiv. Soil Security, 1 (2017) 33–45.
  30. S. Vilvanathan, S. Shanthakumar, Ni2+ and Co2+ adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies, Environ. Technol., 39 (2017) 464–478.
  31. S.Y. Wang, Y.K. Tang, K. Li, Y.Y. Mo, H.F. Li, Z.Q. Gu, Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater, Bioresour. Technol., 174 (2014) 67–73.
  32. Q.W. Wu, L. Meng, Z.H. Zhang, Q.S. Luo, Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions, Environ. Chem., 34 (2015) 1703–1709.
  33. S. Wang, J.-H. Kwak, M.S. Islam, M.A. Naeth, S.X. Chang, Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type, Sci. Total Environ., 712 (2020) 136538, doi:10.1016/j. scitotenv.2020.136538.
  34. J.J. Xia, L. Yuan, S.T. Tong, Adsorption of Ni2+ and Cu2+ on modified biochar, Environ. Prot. Chem. Ind., 36 (2016) 428–433.
  35. Y. Zhao, Y.L. Li, D. Fan, J.P. Song, F. Yang, Application of kernel extreme learning machine and kriging model in prediction of heavy metals removal by biochar, Bioresour. Technol., 329 (2021) 124876, doi:10.1016/j.biortech.2021.124876.
  36. J.G. Fu, Y. Jia, Z. Li, Y.T. Huang, Preparation of Mg-Fe hydrotalcite supported on magnetic biochar and its adsorption capacity to Cd(II) and Ni(II) from water, Environ. Prot. Chem. Ind., 39 (2019) 574–580.
  37. T. Chen, Z.Y. Zhou, H. Rong, R.H. Meng, H.T. Wang, W.J. Lu, Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism, Chemosphere, 134 (2015) 286–293.
  38. C.S. Wang, M.X. He, F. Zhou, L. Chen, J.Z. Zhu, Heavy metal ion adsorption properties and stability of amine-sulfur modified biochar in aqueous solution, Environ. Sci., 42 (2021) 874–882.
  39. B.J. Ni, Q.S. Huang, C. Wang, T.Y. Ni, J. Sun, W. Wei, Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge, Chemosphere, 219 (2019) 351–357.
  40. R. Shan, Y.Y. Shi, J. Gu, Y.Z. Wang, H.R. Yuan, Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems, Chin. J. Chem. Eng., 28 (2020) 1375–1383.
  41. R.R. Liu, H. Wang, L. Han, B.W. Hu, M.Q. Qiu, Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@Biochar composites, Environ. Sci. Pollut. Res., 28 (2021) 55176–55185.
  42. R.R. Liu, Y.H. Zhang, B.W. Hu, H. Wang, Improved Pb(II) removal in aqueous solution by sulfide@biochar and polysaccharose-FeS@biochar composites: efficiencies and mechanisms, Chemosphere, 287 (2022) 132087, doi: 10.1016/j.chemosphere.2021.132087.