References
- C.M. Simonescu, A. Tătăruş, D.C. Culiţă, N.C. Stănică,
I.A. Ionescu, B. Butoi, A.-M. Banici, Comparative study of
CoFe2O4 nanoparticles and CoFe2O4-chitosan composite
for Congo red and Methyl orange removal by adsorption,
Nanomaterials-Basel, 11 (2021) 711, doi: 10.3390/nano11030711.
- R. Jiang, H.-Y. Zhu, J.-B. Li, F.-Q. Fu, J. Yao, S.-T. Jiang,
G.-M. Zeng, Fabrication of novel magnetically separable BiOBr/CoFe2O4 microspheres and its application in the efficient
removal of dye from aqueous phase by an environment-friendly
and economical approach, Appl. Surf. Sci., 364 (2016) 604–612.
- D.D. Yu, H. Wang, J. Yang, Z.Q. Niu, H.T. Lu, Y. Yang,
L.W. Cheng, L. Guo, Dye wastewater cleanup by graphene
composite paper for tailorable supercapacitors, ACS Appl.
Mater. Interfaces, 9 (2017) 21298–21306.
- Z.B. Duan, Y.L. Li, M. Zhang, H. Bian, Y. Wang, L.J. Zhu,
D.H. Xia, Towards cleaner wastewater treatment for special
removal of cationic organic dye pollutants: a case study on
application of supramolecular inclusion technology with
β-cyclodextrin derivatives, J. Cleaner Prod., 256 (2020) 120308,
doi:10.1016/j.jclepro.2020.120308.
- C.M. Teh, A.R. Mohamed, Roles of titanium dioxide and iondoped
titanium dioxide on photocatalytic degradation of
organic pollutants (phenolic compounds and dyes) in aqueous
solutions: a review, J. Alloys Compd., 509 (2010) 1648–1660.
- Y. Yoshiaki, H. Takahiro, H. Jun, Structural characteristics of
xyloglucan-Congo red aggregates as observed by small angle
X-ray scattering, Cellulose, 12 (2005) 469–477.
- M. Yu, S. Zhao, H. Wu, S Asuha, Efficient removal of Congo
red by magnetically separable mesoporous TiO2 modified with
γ-Fe2O3, J. Porous Mater., 20 (2013) 1353–1360.
- F. Bessaha, N. Mahrez, K. Marouf-Khelifa, A. Çoruh, A. Khelifa,
Removal of Congo red by thermally and chemically modified
halloysite: equilibrium, FTIR spectroscopy, and mechanism
studies, Int. J. Environ. Sci. Technol., 16 (2019) 4253–4260.
- S. Yavari, N.M. Mahmodi, P. Teymouri, B. Shahmoradi,
A. Maleki, Cobalt ferrite nanoparticles: preparation, characterization
and anionic dye removal capability, J. Taiwan Inst. Chem.
Eng., 59 (2016) 320–329.
- K. Naseem, Z.H. Farooqi, R. Begum, A. Irfan, Removal of Congo
red dye from aqueous medium by its catalytic reduction using
sodium borohydride in the presence of various inorganic nanocatalysts:
a review, J. Cleaner Prod., 187 (2018) 296–307.
- L.S. Zhang, J.S. Lian, L.X. Wang, J. Jiang, Z.R. Duan, L.J. Zhao,
Markedly enhanced coercive field and Congo red adsorption
capability of cobalt ferrite induced by the doping of nonmagnetic
metal ions, Chem. Eng. J., 241 (2014) 384–392.
- I. Mnif, R. Fendri, D. Ghribi, Biosorption of Congo red from
aqueous solution by Bacillus weihenstephanensis RI12; effect
of SPB1 biosurfactant addition on biodecolorization potency,
Water Sci. Technol., 72 (2015) 865–874.
- N. El-Ahmady El-Naggar, R.A. Hamouda, M.A. Abuelmagd,
S.A. Abdelgalil, Bioprocess development for biosorption
of cobalt ions and Congo red from aquatic mixture using
Enteromorpha intestinalis biomass as sustainable biosorbent,
Sci. Rep., 11 (2021) S41598-021-94026-6, doi: 10.1038/
s41598-021-94026-6.
- J. Liu, N. Wang, H.L. Zhang, J. Baeyens, Adsorption of Congo
red dye on FexCo3–xO4 nanoparticles, J. Environ. Manage.,
238 (2019) 473–483.
- V.K. Gupta, S. Agarwal, R. Ahmad, A. Mirza, J. Mittal,
Sequestration of toxic Congo red dye from aqueous solution
using ecofriendly guar gum/activated carbon nanocomposite,
Int. J. Biol. Macromol., 158 (2020) 1310–1318.
- W.-K. Jo, S. Kumar, M.A. Isaacs, A.F. Lee, S. Karthikeyan,
Cobalt promoted TiO2/GO for the photocatalytic degradation
of oxytetracycline and Congo red, Appl. Catal., B, 201 (2017)
159–168.
- K. Indira, S. Shanmugam, A. Har, S. Vasantharaj, S. Sathiyavimal,
K. Brindhadevi, A. El Askary, A. Elfasakhany,
A. Pugazhendhi,
Photocatalytic degradation of Congo red dye using nickel–
titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract, Environ. Res., 202 (2021) 111647, doi:10.1016/j.envres.2021.111647.
- O.T.H. Le, L.N. Tran, V.T. Doan, Q.V. Pham, A.V. Ngo,
H.H. Nguyen, Mucilage extracted from dragon fruit peel
(Hylocereus undatus) as flocculant for treatment of dye
wastewater by coagulation and flocculation process, Int. J.
Polym. Sci., 2020 (2020) 7468343, doi: 10.1155/2020/7468343.
- P.R. Gogate, A.B. Pandit, A review of imperative technologies
for wastewater treatment II: hybrid methods, Adv. Environ.
Res., 8 (2004) 553–597.
- P. Verma, S.K. Samanta, Microwave-enhanced advanced
oxidation processes for the degradation of dyes in water,
Environ. Chem. Lett., 16 (2018) 969–1007.
- L. Gan, Q. Zhong, A. Geng, L.J. Wang, C. Song, S.G. Han,
J.Q. Cui, L.J. Xu, Cellulose derived carbon nanofiber:
a promising
biochar support to enhance the catalytic performance of
CoFe2O4 in activating peroxymonosulfate for recycled dimethyl
phthalate degradation, Sci. Total Environ., 694 (2019) 133705,
doi:10.1016/j.scitotenv.2019.133705.
- Q.R. Wang, Y. Shi, S. Lv, Y. Liang, P.F. Xiao, Peroxymonosulfate
activation by tea residue biochar loaded with Fe3O4 for the
degradation of tetracycline hydrochloride: performance and
reaction mechanism, RSC Adv., 11 (2021) 18525–18538.
- L.X. Zhang, R. Zhang, W.N. Wang, S. Han, P.F. Xiao,
UV-enhanced nano-nickel ferrite-activated peroxymonosulfate
for the degradation of chlortetracycline hydrochloride in
aqueous solution, RSC Adv., 11 (2021) 20580–20590.
- P.-F. Xiao, L. An, D.-D. Wu, The use of carbon materials in
persulfate-based advanced oxidation process: a review, New
Carbon Mater., 35 (2020) 667–683.
- L. An, P.F. Xiao, Zero-valent iron/activated carbon microelectrolysis
to activate peroxydisulfate for efficient degradation
of chlortetracycline in aqueous solution, RSC Adv., 10 (2020)
19401–19409.
- Y. You, Z.K. Shi, Y.H. Li, Z.J. Zhao, B. He, X.W. Cheng, Magnetic
cobalt ferrite biochar composite as peroxymonosulfate activator
for removal of lomefloxacin hydrochloride, Sep. Purif. Technol.,
272 (2021) 118889, doi: 10.1016/j.seppur.2021.118889.
- Y.-Y. Ahn, E.T. Yun, Heterogeneous metals and metal-free
carbon materials for oxidative degradation through persulfate
activation: a review of heterogeneous catalytic activation of
persulfate related to oxidation mechanism, Korean J. Chem.
Eng., 36 (2019) 1767–1779.
- Y.P. Bao, T.-T. Lim, R. Wang, R.D. Webster, X. Hu, Ureaassisted
one-step synthesis of cobalt ferrite impregnated
ceramic membrane for sulfamethoxazole degradation via
peroxymonosulfate activation, Chem. Eng. J., 343 (2018)
737–747.
- D.X. Gao, M. Junaid, F. Lin, S. Zhang, N. Xu, Degradation of
sulphachloropyridazine sodium in column reactor packed
with CoFe2O4−loaded quartz sand via peroxymonosulfate
activation: Insights into the amorphous phase, efficiency, and
mechanism, Chem. Eng. J., 390 (2020) 124549, doi: 10.1016/j.cej.2020.124549.
- F.P. Hu, W.D. Luo, C.H. Liu, H.L. Dai, X. Xu, Q.Y. Yue, L. Xu,
G.P. Xu, Y. Jian, X.M. Peng, Fabrication of graphitic carbon
nitride functionalized P–CoFe2O4 for the removal of tetracycline
under visible light: optimization, degradation pathways and
mechanism evaluation, Chemosphere, 274 (2021) 129783,
doi:10.1016/j.chemosphere.2021.129783.
- Y. Zhao, M. Song, Q. Cao, P.Z. Sun, Y.H. Chen, F.Y. Meng,
The superoxide radicals’ production via persulfate activated
with CuFe2O4@biochar composites to promote the redox pairs
cycling for efficient degradation of o-nitrochlorobenzene
in soil, J. Hazard. Mater., 400 (2020) 122887, doi: 10.1016/j.jhazmat.2020.122887.
- V.S. Kirankumar, S. Sumathi, Photocatalytic and antibacterial
activity of bismuth and copper co-doped cobalt ferrite
nanoparticles, J. Mater. Sci.: Mater. Electron., 29 (2018) 8738–8746.
- M.J. Sun, X.L. Han, S.G. Chen, Synthesis and photocatalytic
activity of nano-cobalt ferrite catalyst for the
photo-degradation
various dyes under simulated sunlight irradiation, Mater. Sci.
Semicond. Process., 91 (2019) 367–376.
- M. Madhukara Naik, H.S. Bhojya Naik, G. Nagaraju, M. Vinuth,
K. Vinu, R. Viswanath, Green synthesis of zinc doped cobalt
ferrite nanoparticles: structural, optical, photocatalytic and
antibacterial studies, Nano-Struct. Nano-Objects, 19 (2019)
100322, doi: 10.1016/j.nanoso.2019.100322.
- X.F. Wu, W. Wang, F. Li, S. Khaimanov, N. Tsidaeva, M. Lahoubi,
PEG-assisted hydrothermal synthesis
of CoFe2O4 nanoparticles
with enhanced selective adsorption properties for different
dyes, Appl. Surf. Sci., 389 (2016) 1003–1011.
- S. Han, P.F. Xiao, Catalytic degradation of tetracycline using
peroxymonosulfate activated by cobalt and iron co-loaded
pomelo peel biochar nanocomposite: characterization,
performance and reaction mechanism, Sep. Purif. Technol.,
287 (2022) 120533, doi: 10.1016/j.seppur.2022.120533.
- R.M. Balakrishnan, I. Ilango, G. Gamana, X.-T. Bui,
A. Pugazhendhi, Cobalt ferrite nanoparticles and
peroxymonosulfate system for the removal of ampicillin from
aqueous solution, J. Water Process Eng., 40 (2020) 101823,
doi: 10.1016/j.jwpe.2020.101823.
- J. Mohapatra, M.Y. Xing, J. Ping Liu, Inductive thermal effect
of ferrite magnetic nanoparticles, Materials, 12 (2019) 3208,
doi: 10.3390/ma12193208.
- H. Al-aidy El-saied, E.M. El-Fawalb, Green superabsorbent
nanocomposite hydrogels for high-efficiency adsorption
and photo-degradation/reduction of toxic pollutants from
waste water, Polym. Test., 97 (2021) 107134, doi: 10.1016/j.
polymertesting.2021.107134.
- H.X. Zeng, W.Q. Zhang, L. Deng, J. Luo, S. Zhou, X. Liu, Y. Pei,
Z. Shi, J. Crittenden, Degradation of dyes by peroxymonosulfate
activated by ternary CoFeNi-layered double hydroxide:
catalytic performance, mechanism and kinetic modeling,
J. Colloid Interface Sci., 515 (2018) 92–100.
- A. Al-Anazi, W.H. Abdelraheem, C. Han, M.N. Nadagouda,
L. Sygellou, M.K. Arfanis, P. Falaras, V.K. Sharma,
D.D. Dionysiou, Cobalt ferrite nanoparticles with controlled
composition-peroxymonosulfate mediated degradation
of 2-phenylbenzimidazole-5-sulfonic acid, Appl. Catal., B,
221 (2018) 266–279.
- D. Oh, C.-S. Lee, Y.-G. Kang, Y.-S. Chang, Hydroxylamineassisted
peroxymonosulfate activation using cobalt ferrite for
sulfamethoxazole degradation, Chem. Eng. J, 386 (2020) 123751,
doi: 10.1016/j.cej.2019.123751.
- G.B. Jegadeesan, S. Amirthavarshini, J. Divya, G.I. Gunarani,
Catalytic peroxygen activation by biosynthesized iron
nanoparticles for enhanced degradation of Congo red dye, Adv.
Powder Technol., 30 (2019) 2890–2899.
- S. Shao, L. Qian, X. Zhan, M.J. Wang, K. Lu, J.B. Peng, D. Miao,
S.X. Gao, Transformation and toxicity evolution of amlodipine
mediated by cobalt ferrite activated peroxymonosulfate: effect
of oxidant concentration, Chem. Eng. J., 382 (2020) 123005, doi:
10.1016/j.cej.2019.123005.
- Z.-Y. Guan, E. Kwon, J. Lee, Y.-F. Lin, K.-Y. Andrew Lin,
Electrospun cobalt ferrite nanofiber as a magnetic and effective
heterogeneous catalyst for activating peroxymonosulfate to
degrade sulfosalicylic acid, Sep. Purif. Technol., 259 (2021)
118163, doi: 10.1016/j.seppur.2020.118163.
- J.A. Mohammad, F. Alireza, A. Morteza, B.G. Nejad, M. Arshadi,
Recycling bone waste and cobalt-wastewater into a highly
stable and efficient activator of peroxymonosulfate for dye
and HEPES degradation, Process Saf. Environ. Prot., 147 (2021)
626–641.
- L.J. Xu, Y.D. Wang, J. Liu, S.G Han, Z.P. Pan, L. Gan, High-efficient
visible-light photocatalyst based on graphene incorporated
Ag3PO4 nanocomposite applicable for the degradation of a wide
variety of dyes, J. Photochem. Photobiol., A, 340 (2017) 70–79.
- H.Y. Zhou, L.D. Lai, Y.J. Wan, Y.L. He, G. Yao, B. Lai,
Molybdenum disulfide (MoS2): a versatile activator of both
peroxymonosulfate and persulfate for the degradation of
carbamazepine, Chem. Eng. J., 384 (2020) 123264, doi: 10.1016/j.
cej.2019.123264.
- C.Q. Tan, N.Y. Gao, Y. Deng, Y.J. Zhang, M.H. Sui, J. Deng,
S.Q. Zhou, Degradation of antipyrine by UV, UV/H2O2 and UV/PS, J. Hazard. Mater., 260 (2013) 1008–1016.
- M.C. Dodd, C.-H. Huang, Transformation of the antibacterial
agent sulfamethoxazole in reactions with chlorine: kinetics,
mechanisms, and pathways, Environ. Sci. Technol., 38 (2004)
5607–5615.
- X.H. Li, Z.H. Zhao, H.C. Li, J.S. Qian, Degradation of organic
contaminants in the CoFe2O4/peroxymonosulfate process: the
overlooked role of Co(II)-PMS complex, Chem. Eng. J. Adv.,
8 (2021) 100143, doi:10.1016/j.ceja.2021.100143.
- N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, Efficient degradation
of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel
combination of advanced oxidation processes, Chem. Eng. J.,
320 (2017) 436–447.
- Y. Zhao, X.Y. Ma, P.Y. Xu, H. Wang, Y.C. Liu, A. He, Elemental
mercury removal from flue gas by CoFe2O4 catalyzed
peroxymonosulfate, J. Hazard. Mater., 341 (2018) 228–237.
- J.L. Peng, H.Y. Zhou, W. Liu, Z.M. Ao, H.D. J, Y. Liu, S.J. Su,
G. Yao, B Lai, Insights into heterogeneous catalytic activation
of peroxymonosulfate by natural chalcopyrite: pH-dependent
radical generation, degradation pathway and mechanism,
Chem. Eng. J., 397 (2020) 125387, doi: 10.1016/j.cej.2020.125387.
- X.W. Li, X.T. Liu, C.Y. Lin, H.J. Zhang, Z. Zhou, G.X. Fan,
J. Ma, Cobalt ferrite nanoparticles supported on drinking
water treatment residuals: an efficient magnetic heterogeneous
catalyst to activate peroxymonosulfate for the degradation of
atrazine, Chem. Eng. J., 367 (2019) 208–218.
- Q.Y. Song, Y.P. Feng, Z. Wang, G.G. Liu, W.Y. Lv, Degradation
of triphenyl phosphate (TPhP) by
CoFe2O4-activated
peroxymonosulfate oxidation process: kinetics, pathways, and
mechanisms, Sci. Total Environ., 681 (2019) 331–338.
- C. Wang, J.Y. Zhao, C.M. Chen, P. Na, Catalytic activation of
PS/PMS over Fe-Co bimetallic oxides for phenol oxidation
under alkaline conditions, Appl. Surf. Sci., 562 (2021) 150134,
doi: 10.1016/j.apsusc.2021.150134.
- S. Briceño, J. Suarez, G. Gonzalez, Solvothermal synthesis of
cobalt ferrite hollow spheres with chitosan, Mater. Sci. Eng., C,
78 (2017) 842–846.
- Y.Y. Luo, C. Liu, T. Mehmood, Y.J. Zhang, M.Y. Yu, Y.Y. Ren,
Activation of permonosulfate by Co-Fe3O4 composite catalyst
for amino acid removal: performance and mechanism of
Co-Fe3O4 nanoparticles, J. Environ. Chem. Eng., 9 (2021) 106036.