References

  1. O.J. Oginni, Characteristics of Activated Carbons Produced from Herbaceous Biomass Feedstock, Graduate Theses, Dissertations, and Problem Reports, Department of Wood Science and Technology, ProQuest LLC, Virginia, 2018. Available at: https://researchrepository.wvu.edu/etd/3719
  2. S.N. Andrade, C.M. Veloso, R.C.I. Fontan, R.C.F. Bonomo, L.S. Santos, M.J.P. Brito, G.A. Diniz, Chemical-activated carbon from coconut (Cocos nucifera) endocarp waste and its application in the adsorption of β-lactoglobulin protein, Rev. Mex. Ing. Quim, 17 (2018) 463–475.
  3. J. Changle, Lignocellulosic Biomass Derived Activated Carbon for Energy Storage and Adsorption, Graduate Theses, Dissertations, and Problem Reports, ProQuest LLC, 2019. Available at: https://researchrepository.wvu.edu/etd/7446
  4. D. Angin, A. Ilci, Removal of 2,4-dichlorophenoxy acetic acid from aqueous solutions by using activated carbon derived from olive-waste cake, Desal. Water Treat., 82 (2017) 282–291.
  5. E. Zafer Hoşgün, B. Bozan, Effect of different types of thermochemical pretreatment on the enzymatic hydrolysis and the composition of hazelnut shells, Waste Biomass Valorization, 7 (2020) 3739–3748.
  6. S. Sharifan, A Comparative Optimisation Study of Activated Carbon Production from Hazelnut Shells by Thermal and Microwave Heating Methods, Imperial College London, 2013, pp. 1–349.
  7. Y. Baran, H.S. Gökçe, M. Durmaz, Physical and mechanical properties of cement containing regional hazelnut shell ash wastes, J. Cleaner Prod., 259 (2020) 120965, doi: 10.1016/j. jclepro.2020.120965.
  8. H.M.H. Gad, A.A. El-Sayed, Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution, J. Hazard. Mater., 168 (2009) 1070–1081.
  9. T. Kopac, Hydrogen storage characteristics of bio-based porous carbons of different origin: a comparative review, Int. J. Energy Res., 45 (2021) 20497–20523, doi: 10.1002/er.7130.
  10. S. Abbasi, M. Hasanpour, The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles, J. Mater. Sci. - Mater. Electron., 28 (2017) 1307–1314.
  11. N. Yılmaz, O. Alagöz, Adsorption of Methylene blue on activated carbon prepared by chemical activation method from the pomegranate husks, El-Cezerî J. Sci. Eng., 6 (2019) 817–829.
  12. E. Menya, P.W. Olupot, H. Storz, M. Lubwama, Y. Kiros, Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review, Chem. Eng. Res. Des., 129 (2018) 271–296.
  13. E. Altıntıg, I. Acar, H. Altundag, O. Ozyıldırım, Production of activation carbon from rice husk to support Zn2+ ions, Fresenius Environ. Bull., 24 (2015) 1–8.
  14. Y. Kuang, X. Zhang, S. Zhou, Adsorption of Methylene blue in water onto activated carbon by surfactant modification, Water, 12 (2020) 587, doi: 10.3390/w12020587.
  15. K. Grace Pavithra, P. Senthil Kumar, V. Jaikumar, P. Sundar Rajan, Removal of colorants from wastewater:
    a review on sources and treatment strategies, J. Ind. Eng. Chem., 75 (2019) 1–19.
  16. S. Yadav, A. Asthana, R. Chakraborty, B. Jain, A.K. Singh, S.A.C. Carabineiro, Md. A.B.H. Susan, Cationic dye removal using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer nanocomposite, Nanomaterials (Basel), 10 (2020) 170, doi: 10.3390/nano10010170.
  17. U. Tyagi, Adsorption of dyes using activated carbon derived from pyrolysis of vetiveria zizanioides in a fixed bed reactor, Groundwater Sustainable Dev., 10 (2020) 100303, doi: 10.1016/j. gsd.2019.100303.
  18. J. Yener, T. Kopac, G. Dogu, T. Dogu, Dynamic analysis of sorption of Methylene blue dye on granular and powdered activated carbon, Chem. Eng. J., 144 (2008) 400–406.
  19. S.A. Hosseini, S. Babaei, Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of Methylene blue (MB)-process modeling by response surface methodology (RSM), J. Braz. Chem. Soc., 28 (2017) 299–307.
  20. S. Balcı, T. Doğu, H. Yücel, Characterization of activated carbon produced from almond shell and hazelnut shell, J. Chem. Tech. Biotechnol., 60 (1994) 419–426.
  21. T. Yang, A.C. Lua, Characteristics of activated carbons prepared from pistachio-nut shells by physical activation, J. Colloid Interface Sci., 267 (2003) 408–417.
  22. ASTM D4442-20, Standard Test Methods for Direct Moisture Content Measurement of Wood and
    Wood-Based Materials, West Conshohocken, ASTM International, PA, 2020.
  23. ASTM E1755-01, Standard Test Method for Ash in Biomass, West Conshohocken, ASTM International, PA, 2020.
  24. ASTM E872-82, Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels, West Conshohocken, ASTM International, PA, 2019.
  25. T.E. Oladimeji, B.O. Odunoye, F.B. Elehinafe, O.R. Obanla, O.A. Odunlami, Production of activated carbon from sawdust and its efficiency in the treatment of sewage water, Heliyon, 15 (2021) e05960, doi:10.1016/j.heliyon.2021.e05960.
  26. I. Ozdemir, M. Şahin, R. Orhan, M. Erdem, Preparation and characterization of activated carbon from grape stalk by zinc chloride activation, Fuel Process. Technol., 125 (2014) 200–206.
  27. V. Balasundram, N. Ibrahim, R. Md. Kasmani, Mohd. Kamaruddin Abd. Hamid, R. Isha, H. Hasbullah, R.R. Ali, Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil, J. Cleaner Prod., 167 (2017) 218–228.
  28. M.S. Ahmad, M.A. Mehmood, O.S. Al Ayed, G. Ye, H. Luo, M. Ibrahim, U. Rashid, I.A. Nehdi, G. Qadir, Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential, Bioresour. Technol., 224 (2017) 708–713.
  29. R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, A review on biomass as a fuel for boilers, Renewable Sustainable Energy Rev., 15 (2011) 2262–2289.
  30. O. Bag, K. Tekin, Production and characterization of hydrothermal carbon from waste lignocellulosic biomass, J. Fac. Eng. Archit. Gazi Univ., 35 (2020) 1063–1076.
  31. N. Söyler, J.L. Goldfarb, S. Ceylan, M.T. Saçan, Renewable fuels from pyrolysis of Dunaliella tertiolecta: an alternative approach to biochemical conversions of microalgae, Energy, 120 (2017) 907–914.
  32. X. Jian, X. Zhuang, B. Li, X. Xu, Z. Wei, Y. Song, E. Jiang, Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis, Environ. Technol. Innovation, 10 (2018) 27–35.
  33. E. Pehlivan, Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of reactive red (procion red MX-5B) from aqueous solutions, Pamukkale Univ. J. Eng. Sci., 23 (2017) 912–918.
  34. W. Li, K. Yang, J. Peng, L. Zhang, S. Guo, H. Xia, Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars, Ind. Crops Prod., 28 (2008) 190–198.
  35. P.T. Le, H.T. Bui, D.N. Le, T.H. Nguyen, L.A. Pham, H.N. Nguyen, Q.S. Nguyen, T.P. Nguyen, N.T. Bich, T.T. Duong, M. Herrmann, S. Ouillon, T.P.Q. Le, Preparation and characterization of biochar derived from agricultural by-products for dye removal, Adsorpt. Sci. Technol., 2021 (2021) 9161904, doi: 10.1155/2021/9161904.
  36. F. Bouhamed, Z. Elouear, J. Bouzid, Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: equilibrium, kinetics and thermodynamics, J. Taiwan Inst. Chem. Eng., 43 (2012) 741–749.
  37. H. Sayılı, Yeni bir hammaddeden üretilmiş karbonlu malzemenin yapısal, morfolojik ve gözenek özellikleri üzerine çalışmalar, 81 (2017) 245–252.
  38. H. Laksaci, A. Khelifi, M. Trari, A. Addoun, Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides, J. Cleaner Prod., 147 (2017) 254–262.
  39. M. Kaya, Ö. Şahin, C. Saka, Preparation and TG/DTG, FTIR, SEM, BET surface area, iodine number and Methylene blue number analysis of activated carbon from pistachio shells by chemical activation, Int. J. Chem. Reactor Eng., 16 (2018) 1–13, doi: 10.1515/ijcre-2017-0060.
  40. B. Heibati, S. Rodriguez-Couto, M.A. Al-Ghouti, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods, J. Mol. Liq., 208 (2015) 99–105.
  41. M. Ge, X. Wang, M. Du, G. Liang, G. Hu, S.M. Jahangir Alam, Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: kinetic and equilibrium studies, Materials, 12 (2019) 1–16, doi: 10.3390/ ma12010096.
  42. H. Xue, X. Wang, Q. Xu, F. Dhaouadi, L. Sellaoui, M.K. Seliem, A.B. Lamine, H. Belmabrouk, A. Bajahzar,
    A. Bonilla-Petriciolet, Z. Li, Q. Li, Adsorption of Methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: a comparative study by experimental and advanced modeling analysis, Chem. Eng. J., 430 (2022) 132801, doi: 10.1016/j.cej.2021.132801.
  43. S. Afroze, T. Kanti Sen, H.M. Ang, Adsorption performance of continuous fixed bed column for the removal of Methylene blue (MB) dye using Eucalyptus sheathiana bark biomass, Res. Chem. Intermed., 42 (2016) 2343–2364.
  44. A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel Menem, P. Raynaud, Y.M. Moustafa, M.A. Elsayed,
    A.A. Nada, Efficiently activated carbons from corn cob for Methylene blue adsorption, Appl. Surf. Sci. Adv., 3 (2021) 100037, doi: 10.1016/j. apsadv.2020.100037.
  45. Y. Liu, Is the free energy change of adsorption correctly calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
  46. J. Saikia, G. Das, Framboidal vaterite for selective adsorption of anionic dyes, J. Environ. Chem. Eng., 2 (2014) 1165–1173.
  47. E. Altıntıg, S. Balta, M. Balta, Z. Aydemır, Methylene blue removal with ZnO coated montmorillonite: thermodynamic, kinetic, isotherm and artificial intelligence studies, Int. J. Phytorem., (2021), doi:10.1080/15226514.2021.1984386 (in press).
  48. E. Kavci, Malachite green adsorption onto modified pine cone: isotherms, kinetics and thermodynamics mechanism, Chem. Eng. Commun., 208 (2021) 318–327.
  49. Mu. Naushad, A.A. Alqadami, Z.A. AlOthman, I.H. Alsohaimi, M.S. Algamdi, A.M. Aldawsari, Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon, J. Mol. Liq., 293 (2019) 111442, doi: 10.1016/j.molliq.2019.111442.
  50. G. Sharma, B. Thakur, A. Kumar, S. Sharma, Mu. Naushad, F.J. Stadler, Atrazine removal using
    chitin-Cl-poly(acrylamideco-itaconic acid) nanohydrogel: Isotherms and pH responsive nature, Carbohydr. Polym., 241 (2020) 116528, doi: 10.1016/j.carbpol.2020.116258.
  51. A.K. Agarwal, M.S. Kadu, C.P. Pandhurnekar, I.L. Muthreja, Langmuir, Freundlich and BET adsorption isotherm studies for zinc ions onto coal fly ash, Int. J. Application Innovation Eng. Manage., 3 (2014) 64–71.
  52. O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, R.P. Souza, S.R. Melo, V.C. Almeida, Percolation as new method of preparation of modified biosorbents for pollutants removal, Chem. Eng. J., 283 (2016) 1305–1314.
  53. H. Shayesteh, A. Ashrafi, A.R. Kelisham, Evaluation of Fe3O4@MnO2 core-shell magnetic nanoparticles as an adsorbent for decolorization of Methylene blue dye in contaminated water: synthesis and characterization, kinetic, equilibrium, and thermodynamic studies, J. Mol. Struct., 1149 (2017) 199–205, doi:10.1016/j.molstruc.2017.07.100.
  54. M. Kilic, E. Apaydin-Varol, A.E. Pütün, Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
  55. H. Demiral, G. Gündüzogˇlu, Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse, Bioresour. Technol., 101 (2010) 1675–1680.
  56. A. Vimalkumar, J. Thilagan, K. Rajasekaran, C. Raja, M.N. Flora, Preparation of activated carbon from mixed peels of fruits with chemical activation (K2CO3) – application in adsorptive removal of Methylene blue from aqueous solution, Int. J. Environ. Waste Manage., 22 (2018) 260–271.
  57. T.M. Dao, T. Le Luu, Synthesis of activated carbon from macadamia nutshells activated by H2SO4 and K2CO3 for Methylene blue removal in water, Bioresour. Technol. Rep., 12 (2020) 100583, doi:10.1016/j.biteb.2020.100583.
  58. P. Nowicki, A. Bazan, J. Kazmierczak-Razna, R. Pietrzak, Sorption properties of carbonaceous adsorbents obtained by pyrolysis and activation of pistachio nut shells, Adsorpt. Sci. Technol., 33 (2015) 581–586.
  59. R.H. Khuluk, A. Rahmat, Buhani, Suharso, Removal of Methylene blue by adsorption onto activated carbon from coconut shell (Cocos nucifera L.), Indones. J. Sci. Technol., 4 (2019) 229–240.
  60. F. Marrakchi, B.H. Hameed, M. Bouaziz, Mesoporous and high-surface-area activated carbon from defatted olive cake by-products of olive mills for the adsorption kinetics and isotherm of Methylene blue and acid blue 29, J. Environ. Chem. Eng., 8 (2020) 104199, doi: 10.1016/j.jece.2020.104199.
  61. J. Yener, T. Kopac, G. Dogu,T. Dogu, Batch adsorber rate analysis of Methylene blue on amberlite and clinoptilolite, Sep. Sci. Technol., 41 (2006) 1857–1879.