References
- O.J. Oginni, Characteristics of Activated Carbons Produced
from Herbaceous Biomass Feedstock, Graduate Theses,
Dissertations, and Problem Reports, Department of Wood
Science and Technology, ProQuest LLC, Virginia, 2018.
Available at: https://researchrepository.wvu.edu/etd/3719
- S.N. Andrade, C.M. Veloso, R.C.I. Fontan, R.C.F. Bonomo,
L.S. Santos, M.J.P. Brito, G.A. Diniz, Chemical-activated carbon
from coconut (Cocos nucifera) endocarp waste and its application
in the adsorption of β-lactoglobulin protein, Rev. Mex. Ing.
Quim, 17 (2018) 463–475.
- J. Changle, Lignocellulosic Biomass Derived Activated
Carbon for Energy Storage and Adsorption, Graduate Theses,
Dissertations, and Problem Reports, ProQuest LLC, 2019.
Available at: https://researchrepository.wvu.edu/etd/7446
- D. Angin, A. Ilci, Removal of 2,4-dichlorophenoxy acetic acid
from aqueous solutions by using activated carbon derived from
olive-waste cake, Desal. Water Treat., 82 (2017) 282–291.
- E. Zafer Hoşgün, B. Bozan, Effect of different types of
thermochemical pretreatment on the enzymatic hydrolysis and
the composition of hazelnut shells, Waste Biomass Valorization,
7 (2020) 3739–3748.
- S. Sharifan, A Comparative Optimisation Study of Activated
Carbon Production from Hazelnut Shells by Thermal and
Microwave Heating Methods, Imperial College London, 2013,
pp. 1–349.
- Y. Baran, H.S. Gökçe, M. Durmaz, Physical and mechanical
properties of cement containing regional hazelnut shell ash
wastes, J. Cleaner Prod., 259 (2020) 120965, doi: 10.1016/j.
jclepro.2020.120965.
- H.M.H. Gad, A.A. El-Sayed, Activated carbon from agricultural
by-products for the removal of Rhodamine-B from aqueous
solution, J. Hazard. Mater., 168 (2009) 1070–1081.
- T. Kopac, Hydrogen storage characteristics of bio-based porous
carbons of different origin: a comparative review, Int. J. Energy
Res., 45 (2021) 20497–20523, doi: 10.1002/er.7130.
- S. Abbasi, M. Hasanpour, The effect of pH on the photocatalytic
degradation of methyl orange using decorated ZnO
nanoparticles with SnO2 nanoparticles, J. Mater. Sci. - Mater.
Electron., 28 (2017) 1307–1314.
- N. Yılmaz, O. Alagöz, Adsorption of Methylene blue on
activated carbon prepared by chemical activation method from
the pomegranate husks, El-Cezerî J. Sci. Eng., 6 (2019) 817–829.
- E. Menya, P.W. Olupot, H. Storz, M. Lubwama, Y. Kiros,
Production and performance of activated carbon from rice
husks for removal of natural organic matter from water:
a review, Chem. Eng. Res. Des., 129 (2018) 271–296.
- E. Altıntıg, I. Acar, H. Altundag, O. Ozyıldırım, Production of
activation carbon from rice husk to support Zn2+ ions, Fresenius
Environ. Bull., 24 (2015) 1–8.
- Y. Kuang, X. Zhang, S. Zhou, Adsorption of Methylene blue in
water onto activated carbon by surfactant modification, Water,
12 (2020) 587, doi: 10.3390/w12020587.
- K. Grace Pavithra, P. Senthil Kumar, V. Jaikumar, P. Sundar
Rajan, Removal of colorants from wastewater:
a review on
sources and treatment strategies, J. Ind. Eng. Chem., 75 (2019)
1–19.
- S. Yadav, A. Asthana, R. Chakraborty, B. Jain, A.K. Singh,
S.A.C. Carabineiro, Md. A.B.H. Susan, Cationic dye removal
using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer nanocomposite, Nanomaterials (Basel),
10 (2020) 170, doi: 10.3390/nano10010170.
- U. Tyagi, Adsorption of dyes using activated carbon derived
from pyrolysis of vetiveria zizanioides in a fixed bed reactor,
Groundwater Sustainable Dev., 10 (2020) 100303, doi: 10.1016/j.
gsd.2019.100303.
- J. Yener, T. Kopac, G. Dogu, T. Dogu, Dynamic analysis of
sorption of Methylene blue dye on granular and powdered
activated carbon, Chem. Eng. J., 144 (2008) 400–406.
- S.A. Hosseini, S. Babaei, Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for
degradation of Methylene blue (MB)-process modeling by
response surface methodology (RSM), J. Braz. Chem. Soc.,
28 (2017) 299–307.
- S. Balcı, T. Doğu, H. Yücel, Characterization of activated carbon
produced from almond shell and hazelnut shell, J. Chem. Tech.
Biotechnol., 60 (1994) 419–426.
- T. Yang, A.C. Lua, Characteristics of activated carbons prepared
from pistachio-nut shells by physical activation, J. Colloid
Interface Sci., 267 (2003) 408–417.
- ASTM D4442-20, Standard Test Methods for Direct Moisture
Content Measurement of Wood and
Wood-Based Materials,
West Conshohocken, ASTM International, PA, 2020.
- ASTM E1755-01, Standard Test Method for Ash in Biomass,
West Conshohocken, ASTM International, PA, 2020.
- ASTM E872-82, Standard Test Method for Volatile Matter in
the Analysis of Particulate Wood Fuels, West Conshohocken,
ASTM International, PA, 2019.
- T.E. Oladimeji, B.O. Odunoye, F.B. Elehinafe, O.R. Obanla,
O.A. Odunlami, Production of activated carbon from sawdust
and its efficiency in the treatment of sewage water, Heliyon,
15 (2021) e05960, doi:10.1016/j.heliyon.2021.e05960.
- I. Ozdemir, M. Şahin, R. Orhan, M. Erdem, Preparation and
characterization of activated carbon from grape stalk by zinc
chloride activation, Fuel Process. Technol., 125 (2014) 200–206.
- V. Balasundram, N. Ibrahim, R. Md. Kasmani, Mohd.
Kamaruddin Abd. Hamid, R. Isha, H. Hasbullah, R.R. Ali,
Thermogravimetric catalytic pyrolysis and kinetic studies of
coconut copra and rice husk for possible maximum production
of pyrolysis oil, J. Cleaner Prod., 167 (2017) 218–228.
- M.S. Ahmad, M.A. Mehmood, O.S. Al Ayed, G. Ye, H. Luo,
M. Ibrahim, U. Rashid, I.A. Nehdi, G. Qadir, Kinetic analyses
and pyrolytic behavior of Para grass (Urochloa mutica) for its
bioenergy potential, Bioresour. Technol., 224 (2017) 708–713.
- R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain,
S. Mekhilef, A review on biomass as a fuel for boilers, Renewable
Sustainable Energy Rev., 15 (2011) 2262–2289.
- O. Bag, K. Tekin, Production and characterization of
hydrothermal carbon from waste lignocellulosic biomass, J. Fac.
Eng. Archit. Gazi Univ., 35 (2020) 1063–1076.
- N. Söyler, J.L. Goldfarb, S. Ceylan, M.T. Saçan, Renewable fuels
from pyrolysis of Dunaliella tertiolecta: an alternative approach
to biochemical conversions of microalgae, Energy, 120 (2017)
907–914.
- X. Jian, X. Zhuang, B. Li, X. Xu, Z. Wei, Y. Song, E. Jiang,
Comparison of characterization and adsorption of biochars
produced from hydrothermal carbonization and pyrolysis,
Environ. Technol. Innovation, 10 (2018) 27–35.
- E. Pehlivan, Utilization of activated carbon produced from fruit
juice industry solid waste for the adsorption of reactive red
(procion red MX-5B) from aqueous solutions, Pamukkale Univ.
J. Eng. Sci., 23 (2017) 912–918.
- W. Li, K. Yang, J. Peng, L. Zhang, S. Guo, H. Xia, Effects of
carbonization temperatures on characteristics of porosity
in coconut shell chars and activated carbons derived from
carbonized coconut shell chars, Ind. Crops Prod., 28 (2008)
190–198.
- P.T. Le, H.T. Bui, D.N. Le, T.H. Nguyen, L.A. Pham, H.N. Nguyen,
Q.S. Nguyen, T.P. Nguyen, N.T. Bich, T.T. Duong, M. Herrmann,
S. Ouillon, T.P.Q. Le, Preparation and characterization of biochar
derived from agricultural by-products for dye removal, Adsorpt.
Sci. Technol., 2021 (2021) 9161904, doi: 10.1155/2021/9161904.
- F. Bouhamed, Z. Elouear, J. Bouzid, Adsorptive removal
of copper(II) from aqueous solutions on activated carbon
prepared from Tunisian date stones: equilibrium, kinetics and
thermodynamics, J. Taiwan Inst. Chem. Eng., 43 (2012) 741–749.
- H. Sayılı, Yeni bir hammaddeden üretilmiş karbonlu
malzemenin yapısal, morfolojik ve gözenek özellikleri üzerine
çalışmalar, 81 (2017) 245–252.
- H. Laksaci, A. Khelifi, M. Trari, A. Addoun, Synthesis and
characterization of microporous activated carbon from coffee
grounds using potassium hydroxides, J. Cleaner Prod.,
147 (2017) 254–262.
- M. Kaya, Ö. Şahin, C. Saka, Preparation and TG/DTG, FTIR,
SEM, BET surface area, iodine number and Methylene blue
number analysis of activated carbon from pistachio shells by
chemical activation, Int. J. Chem. Reactor Eng., 16 (2018) 1–13,
doi: 10.1515/ijcre-2017-0060.
- B. Heibati, S. Rodriguez-Couto, M.A. Al-Ghouti, M. Asif,
I. Tyagi, S. Agarwal, V.K. Gupta, Kinetics and thermodynamics
of enhanced adsorption of the dye AR 18 using activated
carbons prepared from walnut and poplar woods, J. Mol. Liq.,
208 (2015) 99–105.
- M. Ge, X. Wang, M. Du, G. Liang, G. Hu, S.M. Jahangir Alam,
Adsorption analyses of phenol from aqueous solutions using
magadiite modified with organo-functional groups: kinetic
and equilibrium studies, Materials, 12 (2019) 1–16, doi: 10.3390/
ma12010096.
- H. Xue, X. Wang, Q. Xu, F. Dhaouadi, L. Sellaoui, M.K. Seliem,
A.B. Lamine, H. Belmabrouk, A. Bajahzar,
A. Bonilla-Petriciolet,
Z. Li, Q. Li, Adsorption of Methylene blue from aqueous
solution on activated carbons and composite prepared from
an agricultural waste biomass: a comparative study by
experimental and advanced modeling analysis, Chem. Eng. J.,
430 (2022) 132801, doi: 10.1016/j.cej.2021.132801.
- S. Afroze, T. Kanti Sen, H.M. Ang, Adsorption performance of
continuous fixed bed column for the removal of Methylene blue
(MB) dye using Eucalyptus sheathiana bark biomass, Res. Chem.
Intermed., 42 (2016) 2343–2364.
- A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel
Menem, P. Raynaud, Y.M. Moustafa, M.A. Elsayed,
A.A. Nada,
Efficiently activated carbons from corn cob for Methylene blue
adsorption, Appl. Surf. Sci. Adv., 3 (2021) 100037, doi: 10.1016/j.
apsadv.2020.100037.
- Y. Liu, Is the free energy change of adsorption correctly
calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
- J. Saikia, G. Das, Framboidal vaterite for selective adsorption of
anionic dyes, J. Environ. Chem. Eng., 2 (2014) 1165–1173.
- E. Altıntıg, S. Balta, M. Balta, Z. Aydemır, Methylene blue
removal with ZnO coated montmorillonite: thermodynamic,
kinetic, isotherm and artificial intelligence studies, Int. J. Phytorem.,
(2021), doi:10.1080/15226514.2021.1984386 (in press).
- E. Kavci, Malachite green adsorption onto modified pine cone:
isotherms, kinetics and thermodynamics mechanism, Chem.
Eng. Commun., 208 (2021) 318–327.
- Mu. Naushad, A.A. Alqadami, Z.A. AlOthman, I.H. Alsohaimi,
M.S. Algamdi, A.M. Aldawsari, Adsorption kinetics, isotherm
and reusability studies for the removal of cationic dye from
aqueous medium using arginine modified activated carbon,
J. Mol. Liq., 293 (2019) 111442, doi: 10.1016/j.molliq.2019.111442.
- G. Sharma, B. Thakur, A. Kumar, S. Sharma, Mu. Naushad,
F.J. Stadler, Atrazine removal using
chitin-Cl-poly(acrylamideco-itaconic acid) nanohydrogel: Isotherms and pH responsive
nature, Carbohydr. Polym., 241 (2020) 116528, doi: 10.1016/j.carbpol.2020.116258.
- A.K. Agarwal, M.S. Kadu, C.P. Pandhurnekar, I.L. Muthreja,
Langmuir, Freundlich and BET adsorption isotherm studies for
zinc ions onto coal fly ash, Int. J. Application Innovation Eng.
Manage., 3 (2014) 64–71.
- O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, R.P. Souza,
S.R. Melo, V.C. Almeida, Percolation as new method of
preparation of modified biosorbents for pollutants removal,
Chem. Eng. J., 283 (2016) 1305–1314.
- H. Shayesteh, A. Ashrafi, A.R. Kelisham, Evaluation of Fe3O4@MnO2 core-shell magnetic nanoparticles as an adsorbent for
decolorization of Methylene blue dye in contaminated water:
synthesis and characterization, kinetic, equilibrium, and
thermodynamic studies, J. Mol. Struct., 1149 (2017) 199–205,
doi:10.1016/j.molstruc.2017.07.100.
- M. Kilic, E. Apaydin-Varol, A.E. Pütün, Adsorptive removal
of phenol from aqueous solutions on activated carbon
prepared from tobacco residues: equilibrium, kinetics and
thermodynamics, J. Hazard. Mater., 189 (2011) 397–403.
- H. Demiral, G. Gündüzogˇlu, Removal of nitrate from aqueous
solutions by activated carbon prepared from sugar beet
bagasse, Bioresour. Technol., 101 (2010) 1675–1680.
- A. Vimalkumar, J. Thilagan, K. Rajasekaran, C. Raja, M.N. Flora,
Preparation of activated carbon from mixed peels of fruits with
chemical activation (K2CO3) – application in adsorptive removal
of Methylene blue from aqueous solution, Int. J. Environ. Waste
Manage., 22 (2018) 260–271.
- T.M. Dao, T. Le Luu, Synthesis of activated carbon from
macadamia nutshells activated by H2SO4 and K2CO3 for
Methylene blue removal in water, Bioresour. Technol. Rep.,
12 (2020) 100583, doi:10.1016/j.biteb.2020.100583.
- P. Nowicki, A. Bazan, J. Kazmierczak-Razna, R. Pietrzak,
Sorption properties of carbonaceous adsorbents obtained by
pyrolysis and activation of pistachio nut shells, Adsorpt. Sci.
Technol., 33 (2015) 581–586.
- R.H. Khuluk, A. Rahmat, Buhani, Suharso, Removal of
Methylene blue by adsorption onto activated carbon from
coconut shell (Cocos nucifera L.), Indones. J. Sci. Technol.,
4 (2019) 229–240.
- F. Marrakchi, B.H. Hameed, M. Bouaziz, Mesoporous and
high-surface-area activated carbon from defatted olive cake
by-products of olive mills for the adsorption kinetics and
isotherm of Methylene blue and acid blue 29, J. Environ. Chem.
Eng., 8 (2020) 104199, doi: 10.1016/j.jece.2020.104199.
- J. Yener, T. Kopac, G. Dogu,T. Dogu, Batch adsorber rate
analysis of Methylene blue on amberlite and clinoptilolite,
Sep. Sci. Technol., 41 (2006) 1857–1879.