References

  1. M.D. Monica, L. Jannelli, U. Lamanna, Physicochemical properties of sulfolane, J. Phys. Chem., 72 (1968) 1068–1071.
  2. O. Stewart, L. Minnear, Sulfolane Technical Assistance and Evaluation Report, Alaska Department of Environmental, Oasis Environmental, 825 W. 8th Ave. Anchorage, AK 99501, 2010, p. 24.
  3. A. Bak, V. Kozik, P. Dybal, S. Kus, A. Swietlicka, J. Jampilek, Sulfolane: magic extractor or bad actor? Pilot-scale study on solvent corrosion potential, Sustainability, 10 (2018) 3677, doi: 10.3390/su10103677.
  4. CCME, Canadian Environmental Quality Guidelines for Sulfolane: Water and Soil, Scientific Supporting Document, Canadian Council of Ministers of the Environment, 2006.
  5. E.A. Greene, P.H. Beatty, P.M. Fedorak, Sulfolane degradation by mixed cultures and a bacterial isolate identified as a Variovorax sp., Arch. Microbiol., 174 (2000) 111–119.
  6. L. Yu, M. Mehrabani-Zeinabad, G. Achari, C.H. Langford, Application of UV based advanced oxidation to treat sulfolane in an aqueous media, Chemosphere, 160 (2016) 155–161.
  7. M. Dinh, S.G. Hakimabadi, A.L.-T. Pham, Treatment of sulfolane in groundwater: a critical review, J. Environ. Manage., 263 (2020) 110385, doi: 10.1016/j.jenvman.2020.110385.
  8. L. Yu, G. Achari, C.H. Langford, I. Keir, A Feasibility Study on Sulfolane Degradation in Groundwater Using Neutral Fenton Catalysts, Annual Conference of the Canadian Society for Civil Engineering (CSCE), Resilient Infrastructure, London, ON, 2016.
  9. M.F. Khan, L. Yu, G. Achari, Field evaluation of a pressurized ozone treatment system to degrade sulfolane in contaminated groundwaters, J. Environ. Chem. Eng., 8 (2020) 104037, doi: 10.1016/j.jece.2020.104037.
  10. M. Mehrabani-Zeinabad, L. Yu, G. Achari, C.H. Langford, Mineralisation of sulfolane by UV/O3/H2O2 in a tubular reactor, J. Environ. Eng. Sci., 11 (2016) 44–51.
  11. M. Izadifard, G. Achari, C.H. Langford, Degradation of sulfolane using activated persulfate with UV and
    UV-ozone, Water Res., 125 (2017) 325–331.
  12. M. Izadifard, G. Achari, C.H. Langford, Mineralization of sulfolane in aqueous solutions by ozone/CaO2 and ozone/CaO with potential for field application, Chemosphere, 197 (2018) 535–540.
  13. M. Brandão, L. Yu, C. Garcia, G. Achari, Advanced oxidation based treatment of soil wash water contaminated with sulfolane, Water, 11 (2019) 2152, doi: 10.3390/w11102152.
  14. L. Yu, S. Iranmanesh, I. Keir, G. Achari, A field pilot study on treating groundwater contaminated with sulfolane using UV/H2O2, Water, 12 (2020) 1200, doi: 10.3390/w12041200.
  15. C. Walling, Fenton’s reagent revisited, Acc. Chem. Res., 8 (1975) 125–131.
  16. C. Walling, A. Goosen, Mechanism of the ferric ion catalysed decomposition of hydrogen peroxide. Effect of organic substrates, J. Am. Chem. Soc., 95 (1973) 2987–2991.
  17. S.B. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm., 76 (2008) 714–720.
  18. H. He, Z. Zhou, Electro-Fenton process for water and wastewater treatment, Crit. Rev. Env. Sci. Technol., 47 (2017) 2100–2131.
  19. D. Gümüs, F. Akbal, Comparison of Fenton and electro-Fenton processes for oxidation of phenol, Process Saf. Environ. Prot., 103 (2016) 252–258.
  20. H. Zhang, D.B. Zhang, J.Y. Zhou, Removal of COD from landfill leachate by electro-Fenton method, J. Hazard. Mater., 135 (2006) 106–111.
  21. A. Babuponnusami, K. Muthukumar, Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sonoelectro- Fenton and photo-electro-Fenton processes, J. Chem. Eng., 183 (2012) 1–9.
  22. E. Atmaca, Treatment of landfill leachate by using electro-Fenton method, J. Hazard. Mater., 163 (2009) 109–114.
  23. M.H. Zhou, M.A. Oturan, I. Sirés, Electro-Fenton Process: New Trends and Scale-Up, Springer Nature Singapore Pte. Ltd., 2018.
  24. R.B. Baird, L. Bridgewater, A.D. Eaton, E.W. Rice, Standard Methods for the Examination of Water and Wastewaters, 23rd ed., American Public Health Association, United States, 2017.
  25. S. Damiri, H.R. Pouretedal, A. Rahimi Ashjerdi, Response surface optimization of the purification process of cyclotrimethylenetrinitramine explosive via digestion in binary solvent mixtures of acetone/water, Sep. Sci. Technol., 52 (2017) 478–496.
  26. H.R. Pouretedal, S. Damiri, R. Najafi, Statistical optimization of removal of nitro-body compounds from spent acid of toluene nitration process, Desal. Water Treat., 98 (2017) 161–168.
  27. H.R. Pouretedal, S. Damiri, A. Zandi, Study the operating conditions on agglomeration of RDX particles in anti-solvent crystallization by using statistical optimization, Defence Technol., 15 (2019) 233–240.
  28. H.R. Pouretedal, S. Damiri, J. Moslemi, Re-crystallization of HNS-IV by optimization of solvent/anti-solvent method through Taguchi analysis design, Propellants Explos. Pyrotech., 45 (2020) 1111–1120.
  29. K. Thirugnanasambandham, V. Sivakumar, Optimization of treatment of grey wastewater using electro-Fenton technique – modeling and validation, Process Saf. Environ. Prot., 95 (2015) 60–68.
  30. E. Brillas, S. Garcia-Segura, Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: a review on the relevance of phenol as model molecule, Sep. Purif. Technol., 237 (2020) 116337, doi: 10.1016/j.seppur.2019.116337.
  31. V.K. Sandhwar, B. Prasad, Terephthalic acid removal from aqueous solution by electrocoagulation and electro-Fenton methods: process optimization through response surface methodology, Process Saf. Environ. Prot., 107 (2017) 269–280.
  32. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  33. I. Sirés, E. Brillas, Upgrading and expanding the electro-Fenton and related processes, Curr. Opin. Electrochem., 27 (2021) 100686, doi: 10.1016/j.coelec.2020.100686.
  34. M.Y.A. Mollah, S.R. Pathak, P.K. Patil, M. Vayuvegula, T.S. Agrawal, J.A.G. Gomes, M. Kesmez, D.L. Cocke, Treatment of orange II azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes, J. Hazard. Mater., 109 (2004) 165–171.
  35. H.R. Pouretedal, M. Shamsi, D. Arabiyan, Statistical optimization of nitrocellulose removal from industrial wastewater by electrocoagulation using response surface method, Desal. Water Treat., 212 (2021) 212–219.