References

  1. P. Paraskeva, E. Diamadopoulos, Technologies for olive mill wastewater (OMW) treatment: a review, J. Chem. Technol. Biotechnol., 8 (2006) 1475–1485.
  2. J.M. Ochando-Pulido, S. Pimentel-Moral S, V. Verardo, A. Martinez-Ferez, A focus on advanced physico-chemical processes for olive mill wastewater treatment, Sep. Purif. Technol., 179 (2017) 161–174.
  3. A.A. Aly, Y.N.Y. Hasan, A.S. Al-Farraj, Olive mill wastewater treatment using a simple zeolite-based low-cost method, J. Environ. Manage., 145 (2014) 341–348.
  4. A. De Martino, M. Iorio, P.D. Prenzler, D. Ryan, H.K. Obied, M. Arienzo, Adsorption of phenols from olive oil waste waters on layered double hydroxide, hydroxyaluminium-iron-coprecipitate and hydroxyaluminium-iron-montmorillonite complex, Appl. Clay Sci., 80–81 (2013) 154–161.
  5. K. Al-Malah, M.O.J. Azzam, N.I. Abu-Lail, Olive mills effluent (OME) wastewater post-treatment using activated clay, Sep. Purif. Technol., 20 (2000) 225–234.
  6. F.A. El-Gohary, M.I. Badawy, M.A. El-Khateeb, A.S. El-Kalliny, Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton’s reaction and anaerobic treatment, J. Hazard. Mater., 162 (2009) 1536–1541.
  7. S. Caudo, G. Centi, C. Genovese, S. Perathoner, Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production, Appl. Catal., B, 70 (2007) 437–446.
  8. W.T. Mook, M.H. Chakrabarti, M.K. Aroua, G.M.A. Khan, B.S. Ali, M.S. Islam, M.A. Abu Hassan, Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review, Desalination, 285 (2012) 1–13.
  9. J.J. Qin, M.H. Oo, M.N. Wai, K.A. Kekre, TOC removal in reclamation of municipal wastewater by RO, Sep. Purif. Technol., 46 (2005) 125–128.
  10. J. Xiao, Y. Xie, H. Cao Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation, Chemosphere, 121 (2015) 1–17.
  11. I. García García, P.R. Jiménez Peña, J.L. Bonilla Venceslada, A. Martín Martín, M.A. Martín Santos, R.E. Gómez, Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum, Process Biochem., 35 (2000) 751–758.
  12. A.K. Benekos, C. Zampeta, R. Argyriou, C.N. Economou, I.E. Triantaphyllidou, T.I. Tatoulis, A.G. Tekerlekopoulou, D.V. Vayenas, Treatment of table olive processing wastewaters using electrocoagulation in laboratory and pilot-scale reactors, Process Saf. Environ. Prot., 131 (2019) 38–47.
  13. W.K. Lafi, M. Al-Anber, Z.A. Al-Anber, M. Al-Shannag, A. Khalil, Coagulation and advanced oxidation processes in the treatment of olive mill waste water (OMW), Desal. Water Treat., 24 (2010) 251–256.
  14. S. Vuppala, R.U. Shaik, M. Stoller, Multi-response optimization of coagulation and flocculation of olive mill wastewater: statistical approach, Appl. Sci., 11 (2021) 2344, doi: 10.3390/ app11052344.
  15. R. Ben Achma, A. Ghorbel, S. Sayadi, A. Dafinov, F. Medina, A novel method of copper-exchanged
    aluminum-pillared clay preparation for olive oil mill wastewater treatment, J. Phys. Chem. Solids, 69 (2008) 1116–1120.
  16. G. Rytwo, R. Lavi, T.N. König, L. Avidan, Direct relationship between electrokinetic surface-charge measurement of effluents and coagulant type and dose, Colloid Interface Sci. Commun., 1 (2014) 27–30.
  17. T. Chen, H. Liu, J. Li, D. Chen, D. Chang, D. Kong, R.L. Frost, Effect of thermal treatment on adsorption–desorption of ammonia and sulfur dioxide on palygorskite: change of surface acid–alkali properties, Chem. Eng. J., 166 (2011) 1017–1021.
  18. W. Wang, G. Tian, Z. Zhang, A. Wang, A simple hydrothermal approach to modify palygorskite
    for high-efficient adsorption of Methylene blue and Cu(II) ions, Chem. Eng. J., 265 (2015) 228–238.
  19. F. Gan, J. Zhou, H. Wang, C. Du, X. Chen Removal of phosphate from aqueous solution by thermally treated natural palygorskite, Water Res., 43 (2009) 2907–2915.
  20. M. Önal, Y. Sarikaya, Some physicochemical properties of a clay containing smectite and palygorskite, Appl. Clay Sci., 44 (2009) 161–165.
  21. C.V. Lazaratou, D. Panagiotaras, G. Panagopoulos, M. Pospíšil, D. Papoulis, Ca treated palygorskite and halloysite clay minerals for ferrous iron (Fe2+) removal from water systems, Environ. Technol. Innov., 19 (2020) 100961, doi: 10.1016/j. eti.2020.100961
  22. U.C. Ugochukwu, M.D. Jones, I.M. Head, D.A.C. Manning, C.I. Fialips, Effect of acid activated clay minerals on biodegradation of crude oil hydrocarbons, Int. Biodeterior. Biodegrad., 88 (2014) 185–191.
  23. H. Zhan, T. Zuo, R. Tao, C. Chang, Robust tunicate cellulose nanocrystal/palygorskite nanorod membranes for multifunctional oil/water emulsion separation, ACS Sustainable Chem. Eng., 6 (2018) 10833–10840.
  24. S. Zhang, X. Su, X. Lin, Y. Zhang, Y. Zhang, Experimental study on the multi-media PRB reactor for the remediation of petroleum-contaminated groundwater, Environ. Earth Sci., 73 (2014) 5611–5618.
  25. V. Bekiari, P. Avramidis, Data quality in water analysis: validation of combustion-infrared and combustion-chemiluminescence methods for the simultaneous determination of total organic carbon (TOC) and total nitrogen (TN), Int. J. Environ. Anal. Chem., 94 (2014) 65–76.
  26. F. Aydın Temel, A. Kuleyin, Ammonium removal from landfill leachate using natural zeolite: kinetic, equilibrium, and thermodynamic studies, Desal. Water Treat., 57 (2016) 23873–2389.
  27. M. Lackovičová, T. Baranyaiová, J. Bujdák, The chemical stabilization of methylene blue in colloidal dispersions of smectites, Appl. Clay Sci., 181 (2019) 105222, doi: 10.1016/j. clay.2019.105222.
  28. V. Gionis, G.H. Kacandes, I.D. Kastritis, G.D. Chryssikos, On the structure of palygorskite by mid- and near-infrared spectroscopy, Am. Miner., 91 (2006) 1125–1133.
  29. J. Madejová, W.P. Gates, S. Petit, Infrared and Raman Spectroscopies of Clay Minerals, Developments in Clay Science, Vol. 8, (W.P. Gates, J.T. Kloprogge, J. Madejová, F. Bergaya, Eds.,), Elsevier, Radarweg 29, P.O. Box: 211, 1000 AE Amsterdam, Netherlands, 2017.
  30. E. Mendelovici, D. Carroz Portillo, Organic derivatives of attapulgite—I. infrared spectroscopy and X-ray diffraction studies, Clays Clay Miner., 24 (1976) 177–182.
  31. M. Lainé, E. Balan, T. Allard, E. Paineau, P. Jeunesse, M. Mostafavi, J.-L. Robert, S. Le Caër, Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay mineral, RSC Adv., 7 (2017) 526, doi: 10.1039/C6RA24861F.
  32. V. Bekiari, G. Panagopoulos, D. Papoulis, D. Panagiotaras, Use of halloysite nanotubes to reduce ammonium concentration in water and wastewaters, Mater. Res. Innov., 21 (2017) 313–319.
  33. M. Al. Haddabi, H. Vuthaluru, H. Znad, M. Ahmed, Attapulgite as potential adsorbent for dissolved organic carbon from oily water, Clean – Soil, Air, Water, 43 (2015) 1522–1530.
  34. J. Huang, Y. Liu, X. Wang, Selective adsorption of tannin from flavonoids by organically modified attapulgite clay, J. Hazard Mater., 160 (2008) 382–387.
  35. A. Neaman, A. Singer, Rheological properties of aqueous suspensions of palygorskite, Soil Sci. Soc. Am. J., 64 (2000) 427–436.
  36. M. Kosmulski, Standard enthalpies of ion adsorption onto oxides from aqueous solutions and mixed solvents, Colloids Surf., A, 83 (1994) 237–243.