References
- P. Paraskeva, E. Diamadopoulos, Technologies for olive mill
wastewater (OMW) treatment: a review, J. Chem. Technol.
Biotechnol., 8 (2006) 1475–1485.
- J.M. Ochando-Pulido, S. Pimentel-Moral S, V. Verardo,
A. Martinez-Ferez, A focus on advanced physico-chemical
processes for olive mill wastewater treatment, Sep. Purif.
Technol., 179 (2017) 161–174.
- A.A. Aly, Y.N.Y. Hasan, A.S. Al-Farraj, Olive mill wastewater
treatment using a simple zeolite-based low-cost method,
J. Environ. Manage., 145 (2014) 341–348.
- A. De Martino, M. Iorio, P.D. Prenzler, D. Ryan, H.K. Obied,
M. Arienzo, Adsorption of phenols from olive oil waste waters
on layered double hydroxide, hydroxyaluminium-iron-coprecipitate
and hydroxyaluminium-iron-montmorillonite
complex, Appl. Clay Sci., 80–81 (2013) 154–161.
- K. Al-Malah, M.O.J. Azzam, N.I. Abu-Lail, Olive mills effluent
(OME) wastewater post-treatment using activated clay,
Sep. Purif. Technol., 20 (2000) 225–234.
- F.A. El-Gohary, M.I. Badawy, M.A. El-Khateeb, A.S. El-Kalliny,
Integrated treatment of olive mill wastewater (OMW) by the
combination of Fenton’s reaction and anaerobic treatment,
J. Hazard. Mater., 162 (2009) 1536–1541.
- S. Caudo, G. Centi, C. Genovese, S. Perathoner, Copper- and
iron-pillared clay catalysts for the WHPCO of model and
real wastewater streams from olive oil milling production,
Appl. Catal., B, 70 (2007) 437–446.
- W.T. Mook, M.H. Chakrabarti, M.K. Aroua, G.M.A. Khan,
B.S. Ali, M.S. Islam, M.A. Abu Hassan, Removal of total
ammonia nitrogen (TAN), nitrate and total organic carbon
(TOC) from aquaculture wastewater using electrochemical
technology: a review, Desalination, 285 (2012) 1–13.
- J.J. Qin, M.H. Oo, M.N. Wai, K.A. Kekre, TOC removal in
reclamation of municipal wastewater by RO, Sep. Purif.
Technol., 46 (2005) 125–128.
- J. Xiao, Y. Xie, H. Cao Organic pollutants removal in wastewater
by heterogeneous photocatalytic ozonation, Chemosphere,
121 (2015) 1–17.
- I. García García, P.R. Jiménez Peña, J.L. Bonilla Venceslada,
A. Martín Martín, M.A. Martín Santos, R.E. Gómez, Removal
of phenol compounds from olive mill wastewater using
Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus
and Geotrichum candidum, Process Biochem., 35 (2000) 751–758.
- A.K. Benekos, C. Zampeta, R. Argyriou, C.N. Economou,
I.E. Triantaphyllidou, T.I. Tatoulis, A.G. Tekerlekopoulou,
D.V. Vayenas, Treatment of table olive processing wastewaters
using electrocoagulation in laboratory and pilot-scale reactors,
Process Saf. Environ. Prot., 131 (2019) 38–47.
- W.K. Lafi, M. Al-Anber, Z.A. Al-Anber, M. Al-Shannag,
A. Khalil, Coagulation and advanced oxidation processes in the
treatment of olive mill waste water (OMW), Desal. Water Treat.,
24 (2010) 251–256.
- S. Vuppala, R.U. Shaik, M. Stoller, Multi-response optimization
of coagulation and flocculation of olive mill wastewater:
statistical approach, Appl. Sci., 11 (2021) 2344, doi: 10.3390/
app11052344.
- R. Ben Achma, A. Ghorbel, S. Sayadi, A. Dafinov, F. Medina,
A novel method of copper-exchanged
aluminum-pillared clay
preparation for olive oil mill wastewater treatment, J. Phys.
Chem. Solids, 69 (2008) 1116–1120.
- G. Rytwo, R. Lavi, T.N. König, L. Avidan, Direct relationship
between electrokinetic surface-charge measurement of effluents
and coagulant type and dose, Colloid Interface Sci. Commun.,
1 (2014) 27–30.
- T. Chen, H. Liu, J. Li, D. Chen, D. Chang, D. Kong, R.L. Frost,
Effect of thermal treatment on adsorption–desorption of
ammonia and sulfur dioxide on palygorskite: change of surface
acid–alkali properties, Chem. Eng. J., 166 (2011) 1017–1021.
- W. Wang, G. Tian, Z. Zhang, A. Wang, A simple hydrothermal
approach to modify palygorskite
for high-efficient adsorption
of Methylene blue and Cu(II) ions, Chem. Eng. J., 265 (2015)
228–238.
- F. Gan, J. Zhou, H. Wang, C. Du, X. Chen Removal of
phosphate from aqueous solution by thermally treated natural
palygorskite, Water Res., 43 (2009) 2907–2915.
- M. Önal, Y. Sarikaya, Some physicochemical properties of a clay
containing smectite and palygorskite, Appl. Clay Sci., 44 (2009)
161–165.
- C.V. Lazaratou, D. Panagiotaras, G. Panagopoulos, M. Pospíšil,
D. Papoulis, Ca treated palygorskite and halloysite clay
minerals for ferrous iron (Fe2+) removal from water systems,
Environ. Technol. Innov., 19 (2020) 100961, doi: 10.1016/j.
eti.2020.100961
- U.C. Ugochukwu, M.D. Jones, I.M. Head, D.A.C. Manning,
C.I. Fialips, Effect of acid activated clay minerals on
biodegradation of crude oil hydrocarbons, Int. Biodeterior.
Biodegrad., 88 (2014) 185–191.
- H. Zhan, T. Zuo, R. Tao, C. Chang, Robust tunicate
cellulose nanocrystal/palygorskite nanorod membranes for
multifunctional oil/water emulsion separation, ACS Sustainable
Chem. Eng., 6 (2018) 10833–10840.
- S. Zhang, X. Su, X. Lin, Y. Zhang, Y. Zhang, Experimental
study on the multi-media PRB reactor for the remediation of
petroleum-contaminated groundwater, Environ. Earth Sci.,
73 (2014) 5611–5618.
- V. Bekiari, P. Avramidis, Data quality in water analysis: validation
of combustion-infrared and combustion-chemiluminescence
methods for the simultaneous determination of total organic
carbon (TOC) and total nitrogen (TN), Int. J. Environ. Anal.
Chem., 94 (2014) 65–76.
- F. Aydın Temel, A. Kuleyin, Ammonium removal from
landfill leachate using natural zeolite: kinetic, equilibrium,
and thermodynamic studies, Desal. Water Treat., 57 (2016)
23873–2389.
- M. Lackovičová, T. Baranyaiová, J. Bujdák, The chemical
stabilization of methylene blue in colloidal dispersions of
smectites, Appl. Clay Sci., 181 (2019) 105222, doi: 10.1016/j.
clay.2019.105222.
- V. Gionis, G.H. Kacandes, I.D. Kastritis, G.D. Chryssikos,
On the structure of palygorskite by mid- and near-infrared
spectroscopy, Am. Miner., 91 (2006) 1125–1133.
- J. Madejová, W.P. Gates, S. Petit, Infrared and Raman
Spectroscopies of Clay Minerals, Developments in Clay
Science, Vol. 8, (W.P. Gates, J.T. Kloprogge, J. Madejová, F.
Bergaya, Eds.,), Elsevier, Radarweg 29, P.O. Box: 211, 1000 AE
Amsterdam, Netherlands, 2017.
- E. Mendelovici, D. Carroz Portillo, Organic derivatives of
attapulgite—I. infrared spectroscopy and X-ray diffraction
studies, Clays Clay Miner., 24 (1976) 177–182.
- M. Lainé, E. Balan, T. Allard, E. Paineau, P. Jeunesse,
M. Mostafavi, J.-L. Robert, S. Le Caër, Reaction mechanisms in
swelling clays under ionizing radiation: influence of the water
amount and of the nature of the clay mineral, RSC Adv., 7 (2017)
526, doi: 10.1039/C6RA24861F.
- V. Bekiari, G. Panagopoulos, D. Papoulis, D. Panagiotaras, Use
of halloysite nanotubes to reduce ammonium concentration in
water and wastewaters, Mater. Res. Innov., 21 (2017) 313–319.
- M. Al. Haddabi, H. Vuthaluru, H. Znad, M. Ahmed, Attapulgite
as potential adsorbent for dissolved organic carbon from oily
water, Clean – Soil, Air, Water, 43 (2015) 1522–1530.
- J. Huang, Y. Liu, X. Wang, Selective adsorption of tannin from
flavonoids by organically modified attapulgite clay, J. Hazard
Mater., 160 (2008) 382–387.
- A. Neaman, A. Singer, Rheological properties of aqueous
suspensions of palygorskite, Soil Sci. Soc. Am. J., 64 (2000)
427–436.
- M. Kosmulski, Standard enthalpies of ion adsorption onto
oxides from aqueous solutions and mixed solvents, Colloids
Surf., A, 83 (1994) 237–243.