References

  1. X.F. Sun, L. Ni, H.K. Chen, Rural domestic sewage treatment methods and operation modes thinking, Jiangsu Agric. Sci., 1 (2011) 419–421.
  2. Y.S. Wan, P. Zhang, J.S. Feng, Analysis of typical technology of rural domestic sewage treatment, J. Anhui Agric. Sci., 38 (2010) 18267–18268.
  3. L.R. Zhang, Rural sewage treatment technology, Chem. Eng. Des. Commun., 45 (2019) 123–124.
  4. C.J. Vörösmarty, P. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn,
    C.A. Sullivan, C. Reidy Liermann, P.M. Davies, Global threats to human water security and river biodiversity, Nature, 467 (2010) 555–561.
  5. Supply WUJW, WHO, UNICEF, Progress on Drinking Water and Sanitation 2012 Update, WHO Press, USA, 2012.
  6. M. Ekrem Karpuzcu, A. İnci, M.H. Goktas, I. Ozturk, Management of wastewater in rural districts of Istanbul metropolitan municipality, Water Sci. Technol., 79 (2019) 2079–2085.
  7. L.M. de Oliveira Cruz, A.L. Tonetti, B.G.L.A. Gomes, Association of septic tank and sand filter for wastewater treatment: fullscale feasibility for decentralized sanitation, J. Water Sanit. Hyg. Dev., 8 (2018) 268–277.
  8. W.H. Wang, T.H. Kuan, Rural sewage treatment processing in Yongjia County, Zhejiang Province, Earth Environ. Sci., 39 (2016) 012037, doi: 10.1088/1755-1315/39/1/012037.
  9. J. Vymazal, The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development, Water Res., 47 (2013) 4795–4811.
  10. J.W. Tang, M. Li, Y.F. Zhang, Research on the optimal operation of inverted A2/O&MBR process for rural domestic sewage treatment, Mater. Sci. Eng., 452 (2018) 022163, doi: 10.1088/1757-899X/452/2/022163.
  11. Y.K. Son, H.-P. Rhee, C.G. Yoon, T.Y. Kwon, Feasibility study of ecological wastewater treatment system for decentralized rural community in South Korea, Desal. Water Treat., 57 (2016) 20766–20773.
  12. X.X. Shen, D.C. Huang, C.Z. Zhang, K. Hu, Performance evaluation of constructed wetlands treating wastewater treatment plant effluent in Taihu lake, China, Clean – Soil Air Water, 46 (2018) 1600442, doi:10.1002/clen.201600442.
  13. A. Rizzo, K. Tondera, T.G. Pálfy, U. Dittmer, D. Meyer, C. Schreiber, N. Zacharias, J.P. Ruppelt, D. Esser, P. Molle, S. Troesch, F. Masi, Constructed wetlands for combined sewer overflow treatment: a state-of-the-art review, Sci. Total Environ., 727 (2020) 138618, doi: 10.1016/j.scitotenv.2020.138618.
  14. R. Xiong, M. Xie, C.L. Feng, J. Yan, X.S. Guo, B.Y. Xiao, Rural domestic sewage treatment by a combined process of anaerobic tank, drop-aeration and constructed wetland, Chin. J. Environ. Eng., 13 (2019) 327–331.
  15. C.Z. Wu, X.J. Li, Analysis of seasonal operation effects of CRI and WRSIS integrated system on rural domestic sewage, Southwest China J. Agric. Sci., 31 (2018) 177–183.
  16. L. Wang, X.M. Zhu, R. Li, Research on optimization model of rural domestic sewage treatment based on control unit, Earth Environ. Sci., 208 (2018) 012051.
  17. Y. Sun, M. Garrido-Baserba, M. Molinos-Senante, N.A. Donikian, M. Poch, D. Rosso, A composite indicator approach to assess the sustainability and resilience of wastewater management alternatives, Sci. Total Environ., 725 (2020) 138286, doi: 10.1016/j.scitotenv.2020.138286.
  18. A. Padilla-Rivera, L.P. Güereca, A proposal metric for sustainability evaluations of wastewater treatment systems (SEWATS), Ecol. Indic., 103 (2019) 22–23.
  19. A. Aydi, T. Abichou, I.H. Nasr, M. Louati, M. Zairi, Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS, Environ. Monit. Assess., 188 (2016) 50–76.
  20. P. Arroyo, M. Molinos-Senante, Selecting appropriate wastewater treatment technologies using a choosing-byadvantages approach, Sci. Total Environ., 625 (2018) 819–827.
  21. J.A. Dewar, J.A. Friel, Delphi method, J. Encycl. Oper. Res. Manage. Sci., 20 (2013) 406–408.
  22. H.T. Jiang, J.Q. Tang, X.H. Li, W.Y. Fang, Y. Bian, X. Mi, D.X. Shan, Y.J. Dai, Rural domestic sewage treatment in Northeast cold region of China: rational evaluation of technology options, Desal. Water Treat., 229 (2021) 153–166.
  23. P.J. Ren, Z.S. Xu, H.C. Liao, Intuitionistic multiplicative analytic hierarchy process in group decision making, J. Comput. Ind. Eng., 101 (2016) 513–524.
  24. L.H. Zhang, T. Wang, J. Li, H.N. Xie, Y.E. Wang, D.Y. Wei, Discussion on the key issues of rural domestic sewage treatment planning in typical counties in Northwest China, Technol. Water Treat., (2022), (in press).
  25. Z.H. Ma, Research on upgrading and renovation scheme of domestic sewage treatment plant in Northwest China-taking Yongdeng county sewage treatment plant as an example, Agric. Technol., 41 (2021) 49–51.
  26. C.W. Luo, L.W. Yang, W.D. Ma, Research on Quality and Efficiency Improvement Process of a Sewage Treatment Plant in Northwest China, Changan University, China, 2019.
  27. H.T. Jiang, Q.Y. Xiong, X. Chen, W.Y. Pan, Y.J. Dai, Carrier effect of S-metolachlor by microplastics and environmental risk assessment, J. Water Process Eng., 44 (2021) 102451, doi: 10.1016/j.jwpe.2021.102451.
  28. A.R. Karimi, N. Mehrdadi, S.J. Hashemian, G.R. Nabi Bidhendi, R. Tavakkoli Moghaddam, Selection of wastewater treatment process based on the analytical hierarchy process and fuzzy analytical hierarchy process methods, Environ. Sci. Technol., 8 (2011) 267–280.
  29. C. Wei, J.Y. Wei, Q.P. Kong, D. Fan, G.L. Qiu, C.H. Feng, F.S. Li, S. Preis, C.H. Wei, Selection of optimum biological treatment for coking wastewater using analytic hierarchy process, Sci. Total Environ., 742 (2020) 140400, doi: 10.1016/j. scitotenv.2020.140400.
  30. M. Martin-Utrillas, M. Reyes-Medina, J. Curiel-Esparza, J. Canto- Perello, Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills, Clean Technol. Environ., 17 (2015) 873–885.
  31. W.T. Zhu, X.F. Sima, L.P. Yu, X.D. Chen, T. Fang, Optimizing operational parameters of new constructed rapid infiltration system in villages and towns wastewater treatment, Chin. J. Environ. Eng., 5 (2012) 1459–1466.
  32. C.H. Ju, W.D. Zhang, L. Zhu, Q.F. Sun, China’s rural sewage treatment problems and countermeasures, Environ. Prot., 6 (2016) 49–52.
  33. Y. Dai, K. Zhang, X. Meng, J. Li, X. Guan, Q. Sun, Y. Sun, W. Wang, M. Lin, M. Liu, S. Yang, Y. Chen, F. Gao, X. Zhang, Z. Liu, New use for spent coffee ground as an adsorbent for tetracycline removal in water, Chemosphere, 215 (2019) 163−172.
  34. C. Wei, J.Y. Wei, Q.P. Kong, D. Fan, G.L. Qiu, C.H. Feng, F.S. Li, S. Preis, C.H. Wei, Selection of optimum biological treatment for coking wastewater using analytic hierarchy process, Sci. Total Environ., 742 (2020) 140400, doi: 10.1016/j. scitotenv.2020.140400.
  35. L.X. Fu, N. Cui, S.H. Liu, R.X. Li, H.R. Li, R.J. Li, Treatment performance of rural domestic wastewater by hydrolytic acidification – biological contact oxidation – MBR integrated treatment equipment, Environ. Eng. J., 36 (2018) 49–52.
  36. J. Huo, Research on the countermeasures of rural domestic sewage treatment, Henan Agric., 15 (2013) 19–20.
  37. M.N. Chong, A.N.M. Ho, T. Gardner, A.K. Sharma, B. Hood, Assessing decentralised wastewater treatment technologies: correlating technology selection to system robustness, energy consumption and GHG emission, J. Water Clim. Change, 4 (2013) 338–347.
  38. Z.Z. Wang, F.S. Qu, H. Liang, G.B. Li, R.W. Field, Effect of low temperature on the performance of a gravity flow canon-like pilot plant MBR treating surface water, Desal. Water Treat., 56 (2015) 2856–2866.
  39. Y. Dai, J. Shi, N. Zhang, Z. Pan, C. Xing, X. Chen, Current research trends on microplastics pollution and impacts on agro-ecosystems: a short review, Sep. Sci. Technol., 57 (2022) 656–669.
  40. Z.L. Jia, Application of stable pond + constructed wetland coupling system in the treatment of slurry water in Lulong county, J. Green Sci. Technol., 23 (2021) 74–76.
  41. Y.N. Hao, L.L. Song, K.W. L, Research on rural sewage treatment, China Sci. Technol. Inf., 16 (2013) 44.
  42. Y. Dai, W. Wang, L. Lu, L.L. Yan, D.Y. Yu, Utilization of biochar for the removal of nitrogen and phosphorus,
    J. Cleaner Prod., 257 (2020) 120573, doi: 10.1016/j.jclepro.2020.120573.
  43. L. Liu, X.R. Wang, W.Y. Fang, X.H. Li, D.X. Shan, Y.J. Dai, Adsorption of metolachlor by a novel magnetic illite–biochar and recovery from soil, Environ. Res., 204 (2022) 111919, doi: 10.1016/j.envres.2021.111919.
  44. J.W. Zhao, F. Gao, Y. Sun, W.Y. Fang, X.H. Li, Y.J. Dai, New use for biochar derived from bovine manure for tetracycline removal, J. Environ. Chem. Eng., 9 (2021) 105585, doi: 10.1016/j.jece.2021.105585.
  45. L. Liu, Y.J. Dai, Strong adsorption of metolachlor by biochar prepared from walnut shells in water, Environ. Sci. Pollut. Res., 28 (2021) 48379−48391.
  46. J.W. Zhao, Y.J. Dai, Tetracycline adsorption mechanisms by NaOH-modified biochar derived from waste Auricularia auricula dregs, Environ. Sci. Pollut. Res., 29 (2022) 9142–9152.