References
- V.L. Singer, T.E. Lawlor, S. Yue, Comparison of SYBR Green
I nucleic acid gel stain mutagenicity and ethidium bromide
mutagenicity in the Salmonella/mammalian microsome
reverse mutation assay (Ames test), Mutat. Res., 439 (1999)
37–47.
- S. Thititananukiji, R. Vejaratpimol, T. Pewnim, A.W. Fast,
Ethidium bromide nuclear staining and fluorescence
microscopy: an alternative method for triploidy detection in
fish, J. World Aquacult Soc., 27 (2010) 213–217.
- M. Waring, Ethidium and Propidium, J.W. Corcoran,
F.E. Hahn, J.F. Snell, K.L. Arora, Eds., Mechanism of Action
of Antimicrobial and Antitumor Agents. Antibiotics 3,
Springer, Berlin, 1975, pp. 141–165. Available at: https://doi.
org/10.1007/978-3-642-46304-4_10
- S. Amirijavid, M. Mohammadi, Toxicity of the ethidium
bromide on germination of wheat, alfalfa and tomato, Int. J.
Agric. Soil Sci., 2 (2014) 69–74.
- M. Rajabi, O. Moradi, K. Zare, Kinetics adsorption study of
the ethidium bromide by graphene oxide as adsorbent from
aqueous matrices, Int. Nano Lett., 7 (2017) 35–41.
- B. Heibati, K. Yetilmezsoy, M.A. Zazouli, S. Rodriguez-Couto,
I. Tyagi, S. Agarwal, V.K. Gupta, Adsorption of ethidium
bromide (EtBr) from aqueous solutions by natural pumice and
aluminium-coated pumice, J. Mol. Liq., 213 (2016) 41–47.
- A. Fakhri, Assessment of Ethidium bromide and Ethidium
monoazide bromide removal from aqueous matrices by
adsorption on cupric oxide nanoparticles, Ecotoxicol. Environ.
Saf., 104 (2014) 386–392.
- O. Moradi, A. Fakhri, S. Adami, S. Adami, Isotherm,
thermodynamic, kinetics, and adsorption mechanism studies
of Ethidium bromide by single-walled carbon nanotube
and carboxylate group functionalized single-walled carbon
nanotube, J. Colloid Interface Sci., 395 (2013) 224–229.
- R.G. Harris, J.D. Wells, B.B. Johnson, Selective adsorption
of dyes and other organic molecules to kaolinite and oxide
surfaces, Colloids Surf., A, 180 (2001) 131–140.
- F. Najafi, M. Norouzi, K. Zare, A. Fakhri, Removal of ethidium
bromide by carbon nanotube in aqueous solution: isotherms,
equilibrium mechanism studies, and its comparison with
nanoscale of zero valent iron as adsorbent, J. Nanostruct.
Chem., 3 (2013) 60, doi: 10.1186/2193-8865-3-60.
- G.D. Yuan, B.K.G. Theng, G.J. Churchman, W.P. Gates, Clays
and Clay Minerals for Pollution Control, F. Bergaya, G. Lagaly,
Eds., Handbook of Clay Science, 2nd ed., Elsevier, Amsterdam,
2013, pp. 587–644. Available at: https://doi.org/10.1016/
S1572-4352(05)01020-2
- B. Sarkar, R. Rusmin, U.C. Ugochukwu, R. Mukhopadhyay,
K.M. Manjaiah, Modified Clay Minerals for Environmental
Applications, M. Mercurio, B. Sarkar, A. Langella, Eds.,
Modified Clay and Zeolite Nanocomposite Materials, Elsevier,
Amsterdam, 2019, pp. 113–127. Available at:
https://doi.
org/10.1016/B978-0-12-814617-0.00003-7
- Z. Li, P.-H. Chang, W.-T. Jiang, Y.-J. Liu, Enhanced removal
of ethidium bromide (EtBr) from aqueous solution using
rectorite, J. Hazard. Mater., 384 (2020) 121254, doi: 10.1016/j.
jhazmat.2019.121254.
- L. Wang, Z. Li, X. Zhang, G. Lv, X. Wang, High capacity ethidium
bromide removal by montmorillonites, Korean J. Chem. Eng.,
37 (2020) 2202–2208.
- Z. Zimmermann, H.W. Zimmermann, pKa-Werte von
Ethidiumbromid und 7-Amino-9-phenyl-10-äthylphenanthridinium-bromid, Zeitschrift für Naturforschung C,
31 (1976) 656–660.
- S.J. Chipera, D.L. Bish, Baseline studies of the Clay Minerals
Society source clays: powder X-ray diffraction analyses, Clays
Clay Miner., 49 (2001) 398–409.
- A. Umran Dogan, M. Dogan, M. Onal, Y. Sarikaya, A. Aburub,
D.E. Wurster, Baseline studies of the Clay Minerals Society
source clays: specific surface area by the Brunauer Emmett
Teller (BET) method, Clays Clay Miner., 54 (2006) 62–66.
- G. Villemure, Effect of negative surface-charge densities of
smectite clays on the adsorption isotherms of racemic and
enantiomeric tris(2,2’-bipyridyl)ruthenium(II) chloride, Clays
Clay Miner., 38 (1990) 622–630.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- Y. Park, G.A. Ayoko, E. Horváth, R. Kurdi, J. Kristof, R.L. Frost,
Structural characterisation and environmental application of
organoclays for the removal of phenolic compounds, J. Colloid
Interface Sci., 393 (2013) 319–334.
- J. Carbajo, C. Adán, A. Rey, A. Martínez-Arias, A. Bahamonde,
Optimization of H2O2 use during the photocatalytic degradation
of ethidium bromide with TiO2 and iron-doped TiO2 catalysts,
Appl. Catal., B, 102 (2011) 85–93.
- M. Doğan, M. Alkan, A. Türkyilmaz, Y. Özdemir, Kinetics and
mechanism of removal of methylene blue by adsorption onto
perlite, J. Hazard Mater., 109 (2004) 141–148.
- R.A. Figueroa, A. Leonard, A.A. MacKay, Modeling tetracycline
antibiotic sorption to clays, Environ. Sci. Technol., 38 (2004)
476–483.
- P.-H. Chang, Z. Li, T.-L. Yu, S. Munkhbayer, T.-H. Kuo, Y.-C. Hung,
J.-S. Jean, K.-H. Lin, Sorptive removal of tetracycline from water
by palygorskite, J. Hazard. Mater., 165 (2009) 148–155.
- Z. Li, P.-H. Chang, W.-T. Jiang, J.-S. Jean, H. Hong, L. Liao,
Removal of diphenhydramine from water by swelling clay
minerals, J. Colloid Interface Sci., 360 (2011) 227–232.
- M. Rajabi, O. Moradi, M. Sillanpää, K. Zare, A.M. Asiri,
S. Agarwal, V.K. Gupta, Removal of toxic chemical ethidium
monoazide bromide using graphene oxide: thermodynamic
and kinetics study, J. Mol. Liq., 29 (2019) 111484, , doi: 10.1016/j.
molliq.2019.111484.
- R. Sulthana, S.N. Taqui, F. Zameer, U.T. Syed, A.A. Syed,
Adsorption of ethidium bromide from aqueous solution
onto nutraceutical industrial fennel seed spent: kinetics and
thermodynamics modeling studies, Int. J. Phytorem., 20 (2018)
1075–1086.
- D. Vasudevan, G.L. Bruland, B.S. Torrance, V.G. Upchurch,
A.A. MacKay, pH-dependent ciprofloxacin sorption to soils:
interaction mechanisms and soil factors influencing sorption,
Geoderma, 151 (2009) 68–76.
- M. Stadler, P.W. Schindler, Modeling of H+ and Cu2+ adsorption
on calcium-montmorillonite, Clays Clay Miner., 41 (1993)
288–296.
- P.-H. Chang, W.-T. Jiang, Z. Li, C.-Y. Kuo, J.-S. Jean,
W.-R. Chen, G. Lv, Mechanism of amitriptyline adsorption on
Ca-montmorillonite (SAz-2), J. Hazard. Mater., 277 (2014) 44−52.
- C.-J. Wang, Z. Li, W.-T. Jiang, J.-S. Jean, C.-C. Liu, Cation
exchange interaction between antibiotic ciprofloxacin and
montmorillonite, J. Hazard. Mater., 183 (2010) 309–314.
- H.H. Eldaroti, S.A. Gadir, M.S. Refat, A.M. Adam,
Preparation, spectroscopic and thermal characterization of
new charge-transfer complexes of ethidium bromide with
π-acceptors. In vitro biological activity studies, Spectrochim.
Acta, Part A, 109 (2013) 259–271.
- B. Sarkar, M. Megharaj, Y. Xi, R. Naidu, Surface charge
characteristics of organo-palygorskites and adsorption of
p-nitrophenol in flow-through reactor system, Chem. Eng. J.,
185–186 (2012) 35–43.
- G.W. Brindley, G. Brown, Crystal Structures of Clay Minerals
and their X-ray Identification, Mineralogical Society, London,
1980.
- P. Quillardet, M. Hofnung, O. Bensaude, Ethidium bromide and
safety—readers suggest alternative solutions, Trends Genetics,
4 (1988) 89–90.
- F.J. Green, Sigma-Aldrich Handbook of Stains, Dyes, and
Indicators, Aldrich Chemical Company, Milwaukee, Wisconsin,
1990.
- J. Madejová, P. Komadel, Baseline studies of the Clay Minerals
Society source clays: infrared methods, Clays Clay Miner.,
49 (2001) 410–432.
- J. Swaminathan, M. Ramalingam, V. Sethuraman,
G.N. Sundaraganesan, S. Sebastian, Vibrational spectroscopic
studies and DFT calculations of 4-aminoantipyrine,
Spectrochim. Acta, Part A, 73 (2009) 593–600.
- D. Garfinkel-Shweky, S. Yariv, Metachromasy in clay-dye
systems: the adsorption of acridine orange
by Na-saponite,
Clay Miner., 32 (1997) 653–663.
- D. Garfinkel-Shweky, S. Yariv, The determination of surface
basicity of the oxygen planes of expanding clay minerals by
acridine orange, J. Colloid Interface Sci., 188 (1997) 168–175.
- J. Bujdák, N. Iyi, Visible spectroscopy of cationic dyes in
dispersions with reduced-charge montmorillonites, Clays Clay
Miner., 50 (2002) 446–454.
- J. Bujdák, Effect of the layer charge of clay minerals on optical
properties of organic dyes. A review, Appl. Clay Sci., 34 (2006)
58–73.
- A.N. Veselkov, L.N. Dymant, S.F. Baranovskiy, The study of
self-association of ethidium bromide in an aqueous solution by
H-NMR spectroscopy, Khim Fizika, 13 (1994) 72–80.
- M. Guenza, C. Cuniberti, The ethidium bromide dimer.
Absorption and fluorescence properties in aqueous solutions,
Spectrochim. Acta, Part A, 44 (1988) 1359–1364.
- R. Cohen, S. Yariv, Metachromasy in clay minerals. Sorption
of acridine orange by montmorillonite, J. Chem. Soc., Faraday
Trans. 1 F, 80 (1984) 1705–1715.
- J. Cenens, R.A. Schoonheydt, Visible spectroscopy of methylene
blue on hectorite, laponite B, and barasym in aqueous
suspension, Clays Clay Miner., 36 (1988) 214–224.
- J. Bujdák, M. Janek, J. Madejova, P. Komadel, Methylene blue
interactions with reduced-charge smectites, Clays Clay Miner.,
49 (2001) 244–254.
- G. Thomas, B. Roques, Proton magnetic resonance studies
of ethidium bromide and its sodium borohydride reduced
derivative, FEBS Lett., 26 (1972) 169–175.