References
- R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. von Gunten,
B. Wehrli, Global water pollution and human health, Annu.
Rev. Environ. Resour., 35 (2010) 109–136.
- Q. Wang, Z. Yang, Industrial water pollution, water environment
treatment, and health risks in China, Environ. Pollut., 218 (2016)
358–365.
- N. Arabzadeh, A. Khosravi, A. Mohammadi, N.M. Mahmoodi,
Enhanced photodegradation of hazardous tartrazine
by composite of nanomolecularly imprinted polymernanophotocatalyst
with high efficiency, Desal. Water Treat.,
57 (2016) 3142–3151.
- V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava,
Removal of the hazardous dye—tartrazine by photodegradation
on titanium dioxide surface, Mater. Sci. Eng., C, 31 (2011)
1062–1067.
- M. Nasr, S. Balme, C. Eid, R. Habchi, P. Miele, M. Bechelany,
Enhanced visible-light photocatalytic performance of electrospun
rGO/TiO2 composite nanofibers, J. Phys. Chem. C, 121 (2017)
261–269.
- P. Oancea, V. Meltzer, Kinetics of tartrazine photodegradation
by UV/H2O2 in aqueous solution, Chem. Pap., 68 (2014)
105–111.
- S. Naama, T. Hadjersi, H. Menari, G. Nezzal, L. Baba Ahmed,
S. Lamrani, Enhancement of the tartrazine photodegradation
by modification of silicon nanowires with metal nanoparticles,
Mater. Res. Bull., 76 (2016) 317–326.
- K.-i. Suehara, Y. Kawamoto, E. Fujii, J. Kohda, Y. Nakano,
T. Yano, Biological treatment of wastewater discharged
from biodiesel fuel production plant with alkali-catalyzed
transesterification, J. Biosci. Bioeng., 100 (2005) 437–442.
- Y. Ji, Y. Wang, J. Sun, T. Yan, J. Li, T. Zhao, X. Yin, C. Sun,
Enhancement of biological treatment of wastewater by
magnetic field, Bioresour. Technol., 101 (2010) 8535–8540.
- J.M. Peralta-Hernández, C.A. Martínez-Huitle, J.L. Guzmán
Mar, A. Hernández-Ramírez, Recent advances in the application
of electro-Fenton and photoelectro-Fenton process for removal
of synthetic dyes in wastewater treatment, J. Environ. Eng.
Manage., 19 (2009) 257–265.
- P. Oancea, V. Meltzer, Photo-Fenton process for the degradation
of Tartrazine (E102) in aqueous medium,
J. Taiwan Inst. Chem.
Eng., 44 (2013) 990–994.
- P.V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the
removal of synthetic dyes from water by electrochemical
advanced oxidation processes, Chemosphere, 197 (2018)
210–227.
- S.S. Tahir, N. Rauf, Removal of a cationic dye from aqueous
solutions by adsorption onto bentonite clay, Chemosphere,
63 (2006) 1842–1848.
- C.-Z. Liang, S.-P. Sun, F.-Y. Li, Y.-K. Ong, T.-S. Chung, Treatment
of highly concentrated wastewater containing multiple synthetic
dyes by a combined process of coagulation/flocculation
and nanofiltration, J. Membr. Sci., 469 (2014) 306–315.
- M.-X. Zhu, L. Lee, H.-H. Wang, Z. Wang, Removal of an anionic
dye by adsorption/precipitation processes using alkaline
white mud, J. Hazard. Mater., 149 (2007) 735–741.
- J. Ménesi, L. Körösi, É. Bazsó, V. Zöllmer, A. Richardt, I. Dékány,
Photocatalytic oxidation of organic pollutants on titania–clay
composites, Chemosphere, 70 (2008) 538–542.
- Y. Zhou, Y. Qin, W. Dai, X. Luo, Highly efficient degradation
of tartrazine with a benzoic acid/TiO2 system, ACS Omega,
4 (2019) 546–554.
- A.A. Nada, H.R. Tantawy, M.A. Elsayed, M. Bechelany,
M.E. Elmowafy, Elaboration of nano titania-magnetic reduced
graphene oxide for degradation of tartrazine dye in aqueous
solution, Solid State Sci., 78 (2018) 116–125.
- R. Elshypany, H. Selim, K. Zakaria, A.H. Moustafa, S.A. Sadeek,
S.I. Sharaa, P. Raynaud, A.A. Nada, Magnetic ZnO crystal
nanoparticle growth on reduced graphene oxide for enhanced
photocatalytic performance under visible light irradiation,
Molecules, 26 (2021) 2269, doi: 10.3390/molecules26082269.
- R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Photocatalytic
degradation of organic pollutants: a review, Mater. Sci. Forum,
734 (2013) 247–272.
- X. Yu, D. Lin, P. Li, Z. Su, Recent advances in the synthesis
and energy applications of TiO2-graphene nanohybrids, Sol.
Energy Mater. Sol. Cells, 172 (2017) 252–269.
- M. Ates, Y. Bayrak, H. Ozkan, O. Yoruk, M. Yildirim,
O. Kuzgun, Synthesis of rGO/TiO2/PEDOT nanocomposites,
supercapacitor device performances and equivalent electrical
circuit models, J. Polym. Res., 49 (2019) 1–16, doi: 10.1007/
s10965-018-1692-2.
- A. Petrella, G. Mascolo, S. Murgolo, V. Petruzzelli, E. Ranieri,
D. Spasiano, D. Petruzzelli, Photocatalytic oxidation of organic
micro-pollutants: pilot plant investigation and mechanistic
aspects of the degradation reaction, Chem. Eng. Commun.,
203 (2016) 1298–1307.
- S. Anandan, Y. Ikuma, K. Niwa, An overview of semi-conductor
photocatalysis: modification of TiO2 nanomaterials, Solid
State Phenom., 162 (2010) 239–260.
- H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia,
M. Hasnain Isa, Photocatalytic oxidation of organic dyes and
pollutants in wastewater using different modified titanium
dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015)
1–36.
- Y.L. Pang, S. Lim, H.C. Yap, A.Z. Abdullah, Sonocatalytic
degradation of Rhodamine B in the presence of iron-doped
TiO2 nanotubes: characterizations and reaction kinetic studies,
AIP Conf. Proc., 1828 (2017) 020010, doi: 10.1063/1.4979381.
- S. Xiao, L. Zhao, X. Leng, X. Lang, J. Lian, Synthesis of
amorphous TiO2 modified ZnO nanorod film with enhanced
photocatalytic properties, Appl. Surf. Sci., 299 (2014) 97–104.
- B. Jin, X. Zhou, J. Luo, X. Xu, L. Ma, D. Huang, Z. Shao, Z. Luo,
Fabrication and characterization of high efficiency and stable
Ag3PO4/TiO2 nanowire array heterostructure photoelectrodes
for the degradation of methyl orange under visible light
irradiation, RSC Adv., 5 (2015) 48118–48123.
- M. Farbod, M. Kajbafvala, Effect of nanoparticle surface
modification on the adsorption-enhanced photocatalysis of
Gd/TiO2 nanocomposite, Powder Technol., 239 (2013) 434–440.
- Y. Cao, Y. Yu, P. Zhang, L. Zhang, T. He, Y. Cao, An enhanced
visible-light photocatalytic activity of TiO2 by nitrogen and
nickel-chlorine modification, Sep. Purif. Technol., 104 (2013)
256–262.
- W. Wei, C. Yu, Q. Zhao, G. Li, Y. Wan, Improvement of the
visible-light photocatalytic performance of TiO2 by carbon
mesostructures, Chem. – A Eur. J., 19 (2013) 566–577.
- S. Sheshmani, M. Nayebi, Modification of TiO2 with graphene
oxide and reduced graphene oxide; enhancing photocatalytic
activity of TiO2 for removal of remazol Black B, Polym.
Compos., 40 (2019) 210–216.
- D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo,
P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu,
R. Ruan,
Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review, J. Cleaner Prod.,
268 (2020) 121725.
- D.S. Pattanayak, J. Mishra, J. Nanda, P.K. Sahoo, R. Kumar,
N.K. Sahoo, Photocatalytic degradation of cyanide using
polyurethane foam immobilized Fe-TCPP-S-TiO2-rGO nanocomposite,
J. Environ. Manage., 297 (2021) 113312, doi: 10.1016/j.jenvman.2021.113312.
- W. Li, Y. Zuo, L. Jiang, D. Yao, Z. Chen, G. He, H. Chen,
Bi2Ti2O7/TiO2/RGO composite for the simulated sunlightdriven
photocatalytic degradation of ciprofloxacin,
Mater. Chem. Phys., 256 (2020) 123650, doi:10.1016/j.
matchemphys.2020.123650.
- V. Vaiano, O. Sacco, M. Matarangolo, Photocatalytic degradation
of paracetamol under UV irradiation using TiO2-graphite
composites, Catal. Today, 315 (2018) 230–236.
- E. Mugunthan, M.B. Saidutta, P.E. Jagadeeshbabu, Photocatalytic
degradation of diclofenac using TiO2-SnO2 mixed
oxide catalysts, Environ. Technol., 40 (2019) 929–941.
- G.S. Anjusree, T.G. Deepak, K.R. Narendra Pai, J. Joseph,
T.A. Arun, S.V. Nair, A. Sreekumaran Nair, TiO2 nanoparticles@
TiO2 nanofibers - an innovative one-dimensional material for
dye-sensitized solar cells, RSC Adv., 4 (2014) 22941–22945.
- J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method
for eco-friendly synthesis of graphene oxide, Carbon, 64 (2013)
225–229.
- H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis
of graphene oxide based on improved hummers method, Sci.
Rep., 6 (2016) 36143, doi: 10.1038/srep36143.
- S. William, J. Hummers, R.E. Offeman, Preparation of graphitic
oxide, J. Am. Chem. Soc., 80 (1958) 1339.
- A.A. Nada, M.F. Bekheet, R. Viter, P. Miele, S. Roualdes,
M. Bechelany, BN/GdxTi(1–x)O(4–x)/2 nanofibers for enhanced
photocatalytic
hydrogen production under visible light, Appl.
Catal., B, 251 (2019) 76–86.
- H.H. El-Maghrabi, A.A. Nada, M.F. Bekheet, S. Roualdes,
W. Riedel, I. Iatsunskyi, E. Coy, A. Gurlo, M. Bechelany, Coaxial
nanofibers of nickel/gadolinium oxide/nickel oxide as highly
effective electrocatalysts for hydrogen evolution reaction,
J. Colloid Interface Sci., 587 (2021) 457–466.
- A.A. Nada, M. Nasr, R. Viter, P. Miele, S. Roualdes,
M. Bechelany, Mesoporous ZnFe2O4@TiO2 nanofibers prepared
by electrospinning coupled to PECVD as highly performing
photocatalytic materials, J. Phys. Chem., C, 121 (2017)
24669–24677.
- E. Gilpavas, C.M. Gómez, J.M. Rynkowski, I. Dobrosz-Gómez,
M.Á. Gómez-García, Decolorization and mineralization of
yellow 5 (E102) by UV/Fe2+/H2O2 process. Optimization of
the operational conditions by response surface methodology,
C.R. Chim., 18 (2015) 1152–1160.
- S. Sugi, P. Usha Rajalakshmi, J. Shanthi, Photocatalytic
degradation efficiency of CuXZn1–XO composite, Optik,
131 (2017) 406–413.
- H. Bao, S. Zhu, L. Zhou, H. Fu, H. Zhang, W. Cai, Mars–van-Krevelen mechanism-based blackening of nano-sized
white semiconducting oxides for synergetic solar photothermocatalytic
degradation of dye pollutants, Nanoscale,
12 (2020) 4030–4039.
- T. Xian, H. Yang, L. Di, J. Ma, H. Zhang, J. Dai, Photocatalytic
reduction synthesis of SrTiO3-graphene nanocomposites and
their enhanced photocatalytic activity, Nanoscale Res. Lett.,
9 (2014) 327, doi:10.1186/1556-276X-9-327.
- H. Jensen, J.H. Pedersen, J.E. Jørgensen, J. Skov Pedersen,
K.D. Joensen, S.B. Iversen, E.G. Søgaard, Determination of size
distributions in nanosized powders by TEM, XRD, and SAXS,
J. Exp. Nanosci., 1 (2007) 355–373.
- A.T. Habte, D.W. Ayele, Synthesis and characterization of
reduced graphene oxide (rGO) started from graphene oxide
(GO) using the tour method with different parameters, Adv.
Mater. Sci. Eng., 2019 (2019) 5058163, doi: 10.1155/2019/5058163.
- M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola,
S.N. Pandey, A. Agarwal, Effect of annealing temperature
on Raman spectra of TiO2 nanoparticles, Chem. Phys. Lett.,
555 (2013) 182–186.
- A. Radoń, P. Włodarczyk, D. Łukowiec, Structure, temperature
and frequency dependent electrical conductivity of oxidized
and reduced electrochemically exfoliated graphite, Physica E,
99 (2018) 82–90.
- M. Ruidíaz-Martínez, M.A. Álvarez, M.V. López-Ramón,
G. Cruz-Quesada, J. Rivera-Utrilla, M. Sánchez-Polo,
Hydrothermal synthesis of RGO-TiO2 composites as highperformance
UV photocatalysts for ethylparaben degradation,
Catalysts, 10 (2020) 520, doi: 10.3390/catal10050520.
- S. Zhang, J. Xu, J. Hu, C. Cui, H. Liu, Interfacial growth of
TiO2-rGO composite by pickering emulsion for photocatalytic
degradation, Langmuir, 33 (2017) 5015–5024.
- X. Bai, X. Zhang, Z. Hua, W. Ma, Z. Dai, X. Huang, H. Gu,
Uniformly distributed anatase TiO2 nanoparticles on graphene:
synthesis, characterization, and photocatalytic application,
J. Alloys Compd., 599 (2014) 10–18.
- P. Wang, J. Wang, X. Wang, H. Yu, J. Yu, M. Lei, Y. Wang, Onestep
synthesis of easy-recycling TiO2-rGO nanocomposite
photocatalysts with enhanced photocatalytic activity, Appl.
Catal., B, 132–133 (2013) 452–459.
- N. Ibrayev, А. Zhumabekov, S. Ghyngazov, E. Lysenko,
Synthesis and study of the properties of nanocomposite
materials TiO2-GO and TiO2-rGO, Mater. Res. Express, 6 (2019)
125036.
- H. Zhang, X. Wang, N. Li, J. Xia, Q. Meng, J. Ding, J. Lu, Synthesis
and characterization of TiO2/graphene oxide nanocomposites
for photoreduction of heavy metal ions in reverse osmosis
concentrate, RSC Adv., 8 (2018) 34241–34251.
- K. Vasanth Kumar, K. Porkodi, A. Selvaganapathi, Constrain
in solving Langmuir–Hinshelwood kinetic expression for the
photocatalytic degradation of Auramine O aqueous solutions
by ZnO catalyst, Dyes Pigm., 75 (2007) 246–249.
- A.S. Morshedy, H.R. Ali, A.A. Nada, A.M. Rabie,
H.H. El-Maghrabi, Highly efficient imprinted polymer nanocomposites
for photocatalytic desulfurization of real diesel fuel,
Environ. Technol. Innovation, 21 (2021) 101206, doi: 10.1016/j.
eti.2020.101206.
- T. Zhang, I.P.A.F. Souza, J. Xu, V.C. Almeida, T. Asefa,
Mesoporous graphitic carbon nitrides decorated with Cu
nanoparticles: efficient photocatalysts for degradation of
tartrazine yellow dye, Nanomaterials, 8 (2018) 636, doi: 10.3390/
nano8090636.
- V. Vaiano, O. Sacco, G. Iervolino, D. Sannino, P. Ciambelli,
R. Liguori, E. Bezzeccheri, A. Rubino, Enhanced visible light
photocatalytic activity by up-conversion phosphors modified
N-doped TiO2, Appl. Catal., B, 176–177 (2015) 594–600.
- S.R. Ali, R. Kumar, S.K. Kadabinakatti, M.C. Arya, Enhanced
UV and visible light—driven photocatalytic degradation of
tartrazine by nickel-doped cerium oxide nanoparticles, Mater.
Res. Express, 6 (2018) 25513, doi: 10.1088/2053-1591/aaee44.
- M.P. Rao, J.J. Wu, A.M. Asiri, S. Anandan, Photocatalytic
degradation of tartrazine dye using CuO straw-sheaf-like
nanostructures, Water Sci. Technol., 75 (2017) 1421–1430.
- V. Vaiano, G. Iervolino, D. Sannino, Photocatalytic removal
of tartrazine dye from aqueous samples on LaFeO3/ZnO
photocatalysts, Chem. Eng. Trans., 52 (2016) 847–852.
- S.K. Al-Dawery, Photo-catalyst degradation of tartrazine
compound in wastewater using TiO2 and UV light, J. Eng. Sci.
Technol., 8 (2013) 683–691.
- M. Darwish, A. Mohammadi, N. Assi, Microwave-assisted
polyol synthesis and characterization of PVP-capped CDS
nanoparticles for the photocatalytic degradation of tartrazine,
Mater. Res. Bull., 74 (2016) 387–396.
- A. Jodat, A. Jodat, Photocatalytic degradation of chloramphenicol
and tartrazine using Ag/TiO2 nanoparticles, Desal. Water Treat.,
52 (2014) 2668–2677.
- I.P.A.F. Souza, L.H.S. Crespo, L. Spessato, S.A.R. Melo,
A.F. Martins, A.L. Cazetta, V.C. Almeida, Optimization of
thermal conditions of sol-gel method for synthesis of TiO2 using
RSM and its influence on photodegradation of tartrazine yellow
dye, J. Environ. Chem. Eng., 9 (2021) 104753, doi: 10.1016/j.
jece.2020.104753.
- S. Chowdhury, R. Balasubramanian, Graphene/semiconductor
nanocomposites (GSNs) for heterogeneous photocatalytic
decolorization of wastewaters contaminated with synthetic
dyes: a review, Appl. Catal., B, 160–161 (2014) 307–324.
- A. Tayel, A.R. Ramadan, O.A. El Seoud, Titanium
dioxide/graphene and titanium dioxide/graphene oxide
nanocomposites: synthesis, characterization and photocatalytic
applications for water decontamination, Catalysts, 8 (2018) 491,
doi: 10.3390/catal8110491.