References

  1. R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. von Gunten, B. Wehrli, Global water pollution and human health, Annu. Rev. Environ. Resour., 35 (2010) 109–136.
  2. Q. Wang, Z. Yang, Industrial water pollution, water environment treatment, and health risks in China, Environ. Pollut., 218 (2016) 358–365.
  3. N. Arabzadeh, A. Khosravi, A. Mohammadi, N.M. Mahmoodi, Enhanced photodegradation of hazardous tartrazine by composite of nanomolecularly imprinted polymernanophotocatalyst with high efficiency, Desal. Water Treat., 57 (2016) 3142–3151.
  4. V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface, Mater. Sci. Eng., C, 31 (2011) 1062–1067.
  5. M. Nasr, S. Balme, C. Eid, R. Habchi, P. Miele, M. Bechelany, Enhanced visible-light photocatalytic performance of electrospun rGO/TiO2 composite nanofibers, J. Phys. Chem. C, 121 (2017) 261–269.
  6. P. Oancea, V. Meltzer, Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution, Chem. Pap., 68 (2014) 105–111.
  7. S. Naama, T. Hadjersi, H. Menari, G. Nezzal, L. Baba Ahmed, S. Lamrani, Enhancement of the tartrazine photodegradation by modification of silicon nanowires with metal nanoparticles, Mater. Res. Bull., 76 (2016) 317–326.
  8. K.-i. Suehara, Y. Kawamoto, E. Fujii, J. Kohda, Y. Nakano, T. Yano, Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification, J. Biosci. Bioeng., 100 (2005) 437–442.
  9. Y. Ji, Y. Wang, J. Sun, T. Yan, J. Li, T. Zhao, X. Yin, C. Sun, Enhancement of biological treatment of wastewater by magnetic field, Bioresour. Technol., 101 (2010) 8535–8540.
  10. J.M. Peralta-Hernández, C.A. Martínez-Huitle, J.L. Guzmán Mar, A. Hernández-Ramírez, Recent advances in the application of electro-Fenton and photoelectro-Fenton process for removal of synthetic dyes in wastewater treatment, J. Environ. Eng. Manage., 19 (2009) 257–265.
  11. P. Oancea, V. Meltzer, Photo-Fenton process for the degradation of Tartrazine (E102) in aqueous medium,
    J. Taiwan Inst. Chem. Eng., 44 (2013) 990–994.
  12. P.V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197 (2018) 210–227.
  13. S.S. Tahir, N. Rauf, Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, Chemosphere, 63 (2006) 1842–1848.
  14. C.-Z. Liang, S.-P. Sun, F.-Y. Li, Y.-K. Ong, T.-S. Chung, Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration, J. Membr. Sci., 469 (2014) 306–315.
  15. M.-X. Zhu, L. Lee, H.-H. Wang, Z. Wang, Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud, J. Hazard. Mater., 149 (2007) 735–741.
  16. J. Ménesi, L. Körösi, É. Bazsó, V. Zöllmer, A. Richardt, I. Dékány, Photocatalytic oxidation of organic pollutants on titania–clay composites, Chemosphere, 70 (2008) 538–542.
  17. Y. Zhou, Y. Qin, W. Dai, X. Luo, Highly efficient degradation of tartrazine with a benzoic acid/TiO2 system, ACS Omega, 4 (2019) 546–554.
  18. A.A. Nada, H.R. Tantawy, M.A. Elsayed, M. Bechelany, M.E. Elmowafy, Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution, Solid State Sci., 78 (2018) 116–125.
  19. R. Elshypany, H. Selim, K. Zakaria, A.H. Moustafa, S.A. Sadeek, S.I. Sharaa, P. Raynaud, A.A. Nada, Magnetic ZnO crystal nanoparticle growth on reduced graphene oxide for enhanced photocatalytic performance under visible light irradiation, Molecules, 26 (2021) 2269, doi: 10.3390/molecules26082269.
  20. R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Photocatalytic degradation of organic pollutants: a review, Mater. Sci. Forum, 734 (2013) 247–272.
  21. X. Yu, D. Lin, P. Li, Z. Su, Recent advances in the synthesis and energy applications of TiO2-graphene nanohybrids, Sol. Energy Mater. Sol. Cells, 172 (2017) 252–269.
  22. M. Ates, Y. Bayrak, H. Ozkan, O. Yoruk, M. Yildirim, O. Kuzgun, Synthesis of rGO/TiO2/PEDOT nanocomposites, supercapacitor device performances and equivalent electrical circuit models, J. Polym. Res., 49 (2019) 1–16, doi: 10.1007/ s10965-018-1692-2.
  23. A. Petrella, G. Mascolo, S. Murgolo, V. Petruzzelli, E. Ranieri, D. Spasiano, D. Petruzzelli, Photocatalytic oxidation of organic micro-pollutants: pilot plant investigation and mechanistic aspects of the degradation reaction, Chem. Eng. Commun., 203 (2016) 1298–1307.
  24. S. Anandan, Y. Ikuma, K. Niwa, An overview of semi-conductor photocatalysis: modification of TiO2 nanomaterials, Solid State Phenom., 162 (2010) 239–260.
  25. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015) 1–36.
  26. Y.L. Pang, S. Lim, H.C. Yap, A.Z. Abdullah, Sonocatalytic degradation of Rhodamine B in the presence of iron-doped TiO2 nanotubes: characterizations and reaction kinetic studies, AIP Conf. Proc., 1828 (2017) 020010, doi: 10.1063/1.4979381.
  27. S. Xiao, L. Zhao, X. Leng, X. Lang, J. Lian, Synthesis of amorphous TiO2 modified ZnO nanorod film with enhanced photocatalytic properties, Appl. Surf. Sci., 299 (2014) 97–104.
  28. B. Jin, X. Zhou, J. Luo, X. Xu, L. Ma, D. Huang, Z. Shao, Z. Luo, Fabrication and characterization of high efficiency and stable Ag3PO4/TiO2 nanowire array heterostructure photoelectrodes for the degradation of methyl orange under visible light irradiation, RSC Adv., 5 (2015) 48118–48123.
  29. M. Farbod, M. Kajbafvala, Effect of nanoparticle surface modification on the adsorption-enhanced photocatalysis of Gd/TiO2 nanocomposite, Powder Technol., 239 (2013) 434–440.
  30. Y. Cao, Y. Yu, P. Zhang, L. Zhang, T. He, Y. Cao, An enhanced visible-light photocatalytic activity of TiO2 by nitrogen and nickel-chlorine modification, Sep. Purif. Technol., 104 (2013) 256–262.
  31. W. Wei, C. Yu, Q. Zhao, G. Li, Y. Wan, Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures, Chem. – A Eur. J., 19 (2013) 566–577.
  32. S. Sheshmani, M. Nayebi, Modification of TiO2 with graphene oxide and reduced graphene oxide; enhancing photocatalytic activity of TiO2 for removal of remazol Black B, Polym. Compos., 40 (2019) 210–216.
  33. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu,
    R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review, J. Cleaner Prod., 268 (2020) 121725.
  34. D.S. Pattanayak, J. Mishra, J. Nanda, P.K. Sahoo, R. Kumar, N.K. Sahoo, Photocatalytic degradation of cyanide using polyurethane foam immobilized Fe-TCPP-S-TiO2-rGO nanocomposite, J. Environ. Manage., 297 (2021) 113312, doi: 10.1016/j.jenvman.2021.113312.
  35. W. Li, Y. Zuo, L. Jiang, D. Yao, Z. Chen, G. He, H. Chen, Bi2Ti2O7/TiO2/RGO composite for the simulated sunlightdriven photocatalytic degradation of ciprofloxacin, Mater. Chem. Phys., 256 (2020) 123650, doi:10.1016/j. matchemphys.2020.123650.
  36. V. Vaiano, O. Sacco, M. Matarangolo, Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites, Catal. Today, 315 (2018) 230–236.
  37. E. Mugunthan, M.B. Saidutta, P.E. Jagadeeshbabu, Photocatalytic degradation of diclofenac using TiO2-SnO2 mixed oxide catalysts, Environ. Technol., 40 (2019) 929–941.
  38. G.S. Anjusree, T.G. Deepak, K.R. Narendra Pai, J. Joseph, T.A. Arun, S.V. Nair, A. Sreekumaran Nair, TiO2 nanoparticles@ TiO2 nanofibers - an innovative one-dimensional material for dye-sensitized solar cells, RSC Adv., 4 (2014) 22941–22945.
  39. J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64 (2013) 225–229.
  40. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method, Sci. Rep., 6 (2016) 36143, doi: 10.1038/srep36143.
  41. S. William, J. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339.
  42. A.A. Nada, M.F. Bekheet, R. Viter, P. Miele, S. Roualdes, M. Bechelany, BN/GdxTi(1–x)O(4–x)/2 nanofibers for enhanced photocatalytic hydrogen production under visible light, Appl. Catal., B, 251 (2019) 76–86.
  43. H.H. El-Maghrabi, A.A. Nada, M.F. Bekheet, S. Roualdes, W. Riedel, I. Iatsunskyi, E. Coy, A. Gurlo, M. Bechelany, Coaxial nanofibers of nickel/gadolinium oxide/nickel oxide as highly effective electrocatalysts for hydrogen evolution reaction, J. Colloid Interface Sci., 587 (2021) 457–466.
  44. A.A. Nada, M. Nasr, R. Viter, P. Miele, S. Roualdes, M. Bechelany, Mesoporous ZnFe2O4@TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials, J. Phys. Chem., C, 121 (2017) 24669–24677.
  45. E. Gilpavas, C.M. Gómez, J.M. Rynkowski, I. Dobrosz-Gómez, M.Á. Gómez-García, Decolorization and mineralization of yellow 5 (E102) by UV/Fe2+/H2O2 process. Optimization of the operational conditions by response surface methodology, C.R. Chim., 18 (2015) 1152–1160.
  46. S. Sugi, P. Usha Rajalakshmi, J. Shanthi, Photocatalytic degradation efficiency of CuXZn1–XO composite, Optik, 131 (2017) 406–413.
  47. H. Bao, S. Zhu, L. Zhou, H. Fu, H. Zhang, W. Cai, Mars–van-Krevelen mechanism-based blackening of nano-sized white semiconducting oxides for synergetic solar photothermocatalytic degradation of dye pollutants, Nanoscale, 12 (2020) 4030–4039.
  48. T. Xian, H. Yang, L. Di, J. Ma, H. Zhang, J. Dai, Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity, Nanoscale Res. Lett., 9 (2014) 327, doi:10.1186/1556-276X-9-327.
  49. H. Jensen, J.H. Pedersen, J.E. Jørgensen, J. Skov Pedersen, K.D. Joensen, S.B. Iversen, E.G. Søgaard, Determination of size distributions in nanosized powders by TEM, XRD, and SAXS, J. Exp. Nanosci., 1 (2007) 355–373.
  50. A.T. Habte, D.W. Ayele, Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters, Adv. Mater. Sci. Eng., 2019 (2019) 5058163, doi: 10.1155/2019/5058163.
  51. M.C. Mathpal, A.K. Tripathi, M.K. Singh, S.P. Gairola, S.N. Pandey, A. Agarwal, Effect of annealing temperature on Raman spectra of TiO2 nanoparticles, Chem. Phys. Lett., 555 (2013) 182–186.
  52. A. Radoń, P. Włodarczyk, D. Łukowiec, Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite, Physica E, 99 (2018) 82–90.
  53. M. Ruidíaz-Martínez, M.A. Álvarez, M.V. López-Ramón, G. Cruz-Quesada, J. Rivera-Utrilla, M. Sánchez-Polo, Hydrothermal synthesis of RGO-TiO2 composites as highperformance UV photocatalysts for ethylparaben degradation, Catalysts, 10 (2020) 520, doi: 10.3390/catal10050520.
  54. S. Zhang, J. Xu, J. Hu, C. Cui, H. Liu, Interfacial growth of TiO2-rGO composite by pickering emulsion for photocatalytic degradation, Langmuir, 33 (2017) 5015–5024.
  55. X. Bai, X. Zhang, Z. Hua, W. Ma, Z. Dai, X. Huang, H. Gu, Uniformly distributed anatase TiO2 nanoparticles on graphene: synthesis, characterization, and photocatalytic application, J. Alloys Compd., 599 (2014) 10–18.
  56. P. Wang, J. Wang, X. Wang, H. Yu, J. Yu, M. Lei, Y. Wang, Onestep synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity, Appl. Catal., B, 132–133 (2013) 452–459.
  57. N. Ibrayev, А. Zhumabekov, S. Ghyngazov, E. Lysenko, Synthesis and study of the properties of nanocomposite materials TiO2-GO and TiO2-rGO, Mater. Res. Express, 6 (2019) 125036.
  58. H. Zhang, X. Wang, N. Li, J. Xia, Q. Meng, J. Ding, J. Lu, Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate, RSC Adv., 8 (2018) 34241–34251.
  59. K. Vasanth Kumar, K. Porkodi, A. Selvaganapathi, Constrain in solving Langmuir–Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst, Dyes Pigm., 75 (2007) 246–249.
  60. A.S. Morshedy, H.R. Ali, A.A. Nada, A.M. Rabie, H.H. El-Maghrabi, Highly efficient imprinted polymer nanocomposites for photocatalytic desulfurization of real diesel fuel, Environ. Technol. Innovation, 21 (2021) 101206, doi: 10.1016/j. eti.2020.101206.
  61. T. Zhang, I.P.A.F. Souza, J. Xu, V.C. Almeida, T. Asefa, Mesoporous graphitic carbon nitrides decorated with Cu nanoparticles: efficient photocatalysts for degradation of tartrazine yellow dye, Nanomaterials, 8 (2018) 636, doi: 10.3390/ nano8090636.
  62. V. Vaiano, O. Sacco, G. Iervolino, D. Sannino, P. Ciambelli, R. Liguori, E. Bezzeccheri, A. Rubino, Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2, Appl. Catal., B, 176–177 (2015) 594–600.
  63. S.R. Ali, R. Kumar, S.K. Kadabinakatti, M.C. Arya, Enhanced UV and visible light—driven photocatalytic degradation of tartrazine by nickel-doped cerium oxide nanoparticles, Mater. Res. Express, 6 (2018) 25513, doi: 10.1088/2053-1591/aaee44.
  64. M.P. Rao, J.J. Wu, A.M. Asiri, S. Anandan, Photocatalytic degradation of tartrazine dye using CuO straw-sheaf-like nanostructures, Water Sci. Technol., 75 (2017) 1421–1430.
  65. V. Vaiano, G. Iervolino, D. Sannino, Photocatalytic removal of tartrazine dye from aqueous samples on LaFeO3/ZnO photocatalysts, Chem. Eng. Trans., 52 (2016) 847–852.
  66. S.K. Al-Dawery, Photo-catalyst degradation of tartrazine compound in wastewater using TiO2 and UV light, J. Eng. Sci. Technol., 8 (2013) 683–691.
  67. M. Darwish, A. Mohammadi, N. Assi, Microwave-assisted polyol synthesis and characterization of PVP-capped CDS nanoparticles for the photocatalytic degradation of tartrazine, Mater. Res. Bull., 74 (2016) 387–396.
  68. A. Jodat, A. Jodat, Photocatalytic degradation of chloramphenicol and tartrazine using Ag/TiO2 nanoparticles, Desal. Water Treat., 52 (2014) 2668–2677.
  69. I.P.A.F. Souza, L.H.S. Crespo, L. Spessato, S.A.R. Melo, A.F. Martins, A.L. Cazetta, V.C. Almeida, Optimization of thermal conditions of sol-gel method for synthesis of TiO2 using RSM and its influence on photodegradation of tartrazine yellow dye, J. Environ. Chem. Eng., 9 (2021) 104753, doi: 10.1016/j. jece.2020.104753.
  70. S. Chowdhury, R. Balasubramanian, Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: a review, Appl. Catal., B, 160–161 (2014) 307–324.
  71. A. Tayel, A.R. Ramadan, O.A. El Seoud, Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination, Catalysts, 8 (2018) 491, doi: 10.3390/catal8110491.