References

  1. M.H. Alsharif, M.K. Younes, Evaluation and forecasting of solar radiation using time series adaptive
    neuro-fuzzy inference system: Seoul city as a case study, IET Renewable Power Gener., 13 (2019) 1711–1723.
  2. A. Mellit, Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review, Int. J. Artif. Intell. Soft Comput., 1 (2008) 52–76.
  3. D. Heinemann, E. Lorenz, M. Girodo, Forecasting of solar radiation, in: Sol. Energy Resour. Manage. Electr. Gener. from Local Lev. Glob. Scale, 2006, pp. 83–94.
  4. C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte, A. Fouilloy, Machine learning methods for solar radiation forecasting: a review, Renewable Energy, 105 (2017) 569–582.
  5. K. Amarouche, A. Akpınar, N.E.I. Bachari, F. Houma, Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast, Renewable Energy, 153 (2020) 840–860.
  6. A.B. Stambouli, Z. Khiat, S. Flazi, Y. Kitamura, A review on the renewable energy development in Algeria: current perspective, energy scenario and sustainability issues, Renewable Sustainable Energy Rev., 16 (2012) 4445–4460.
  7. A.K. Yadav, S.S. Chandel, Solar radiation prediction using artificial neural network techniques: a review, Renewable Sustainable Energy Rev., 33 (2014) 772–781.
  8. B. Amrouche, X. Le Pivert, Artificial neural network based daily local forecasting for global solar radiation, Appl. Energy, 130 (2014) 333–341.
  9. G.E. Hassan, M.E. Youssef, M.A. Ali, Z.E. Mohamed, A.A. Hanafy, Evaluation of different sunshine-based models for predicting global solar radiation – case study: New Borg El-Arab City, Egypt, Therm. Sci., 22 (2018) 979–992.
  10. C. Voyant, C. Darras, M. Muselli, C. Paoli, M.L. Nivet, P. Poggi, Bayesian rules and stochastic models for high accuracy prediction of solar radiation, Appl. Energy, 114 (2014) 218–226.
  11. N.S. Thomaidis, F.J. Santos-Alamillos, D. Pozo-Vázquez, J. Usaola-García, Optimal management of wind and solar energy resources, Comput. Oper. Res., 66 (2016) 284–291.
  12. G. Perveen, M. Rizwan, N. Goel, Comparison of intelligent modelling techniques for forecasting solar energy and its application in solar PV based energy system, IET Energy Syst. Integr., 1 (2019) 34–51.
  13. D. Heinemann, E. Lorenz, M. Girodo, Forecasting of solar radiation, Sol. Energy Resour. Manag. Electr. Gener. from Local Lev. to Glob. Scale., 2006, pp. 83–94.
  14. A. Zeroual, M. Ankrim, A.J. Wilkinson, Stochastic modelling of daily global solar radiation measured in Marrakesh, Morocco, Renewable Energy, 6 (1995) 787–793.
  15. K. Dagestad, Estimating Global Radiation at Ground Level from Satellite Images, Ph.D. Thesis, University of Bergen, Norway, 2005.
  16. M. Muselli, P. Poggi, G. Notton, A. Louche, First order Markov chain model for generating synthetic `typical days’ series of global irradiation in order to design photovoltaic stand alone systems, Energy Convers. Manage., 42 (2001) 675–687.
  17. D.O. Logofet, E.V. Lesnaya, The mathematics of Markov models: What Markov chains can really predict in forest successions, Ecol. Modell., 126 (2000) 285–298.
  18. A. Mellit, S.A. Kalogirou, L. Hontoria, S. Shaari, Artificial intelligence techniques for sizing photovoltaic systems: a review, Renewable Sustainable Energy Rev., 13 (2009) 406–419.
  19. J. Díaz-Gómez, A. Parrales, A. Álvarez, S. Silva-Martínez, D. Colorado, J.A. Hernández, Prediction of global solar radiation by artificial neural network based on a meteorological environmental data, Desal. Water Treat., 55 (2015) 3210–3217.
  20. A.F. Mashaly, A.A. Alazba, Neural network approach for predicting solar still production using agricultural drainage as a feedwater source, Desal. Water Treat., 57 (2016) 28646–28660.
  21. J. Mubiru, Predicting total solar irradiation values using artificial neural networks, Renewable Energy, 33 (2008) 2329–2332.
  22. S.A. Kalogirou, Artificial neural networks in renewable energy systems applications: a review, Renewable Sustainable Energy Rev., 5 (2000) 373–401.
  23. J. Mubiru, E.J.K.B. Banda, Estimation of monthly average daily global solar irradiation using artificial neural networks, Sol. Energy, 82 (2008) 181–187.
  24. F.O. Hocaog􀉐lu, Ö.N. Gerek, M. Kurban, Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feedforward neural networks, Sol. Energy, 82 (2008) 714–726.
  25. B.M. Monge Sanz, N.J. Medrano Marqués, Total ozone time series analysis: a neural network model approach, Nonlinear Process. Geophys., 11 (2004) 683–689.
  26. A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: a tutorial, Computer (Long. Beach. Calif), 29 (1996) 31–44.
  27. C. Paoli, C. Voyant, M. Muselli, M.L. Nivet, Solar Radiation Forecasting Using Ad-hoc Time Series Preprocessing and Neural Networks, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2009, pp. 898–907.
  28. C. Voyant, M. Muselli, C. Paoli, M.L. Nivet, Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation, Energy, 36 (2011) 348–359.
  29. C. Voyant, M. Muselli, C. Paoli, Predictability of PV power grid performance on insular sites without weather stations: use of artificial neural networks, arXiv, (2009), doi: 10.4229/24thEUPVSEC2009-5BV.2.35.
  30. P. Serra, Short-Term Forecasting of Photovoltaic Power Plants, Thesis, Porto University, Portugal, 2014.
  31. H. Mahmoudi, N. Spahis, M.F. Goosen, N. Ghaffour, N. Drouiche, A. Ouagued, Application of geothermal energy for heating and fresh water production in a brackish water greenhouse desalination unit: a case study from Algeria, Renewable Sustainable Energy Rev., 14 (2010) 512–517.
  32. H. Mahmoudi, S.A. Abdul-Wahab, M.F.A. Goosen, S.S. Sablani, J. Perret, A. Ouagued, N. Spahis, Weather data and analysis of hybrid photovoltaic-wind power generation systems adapted to a seawater greenhouse desalination unit designed for arid coastal countries, Desalination, 222 (2008) 119–127.
  33. J.W. Tester, B.J. Anderson, A.S. Batchelor, D.D. Blackwell, R. DiPippo, E.M. Drake, J. Garnish, B. Livesay,
    M.C. Moore, K. Nichols, S. Petty, M. Nafi Toksoz, R.W. Veatch, R. Baria, C. Augustine, E. Murphy, P. Negraru,
    M. Richards, Impact of enhanced geothermal systems on US energy supply in the twenty-first century, Philos. Trans. R. Soc. London, Ser. A, 365 (2007) 1057–1094.
  34. D.A. Dehmas, N. Kherba, F.B. Hacene, N.K. Merzouk, M. Merzouk, H. Mahmoudi, M.F.A. Goosen, On the use of wind energy to power reverse osmosis desalination plant: a case study from Téns (Algeria), Renewable Sustainable Energy Rev., 15 (2011) 956–963.
  35. H. Mahmoudi, O. Abdellah, N. Ghaffour, Capacity building strategies and policy for desalination using renewable energies in Algeria, Renewable Sustainable Energy Rev., 13 (2009) 921–926.
  36. MERRA-2, (n.d.). https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/)
  37. F. Pimenta, W. Kempton, R. Garvine, Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil, Renewable Energy, 33 (2008) 2375–2387.
  38. R. Gelaro, W. McCarty, M.J. Suárez, R. Todling, A. Molod, L. Takacs, C.A. Randles, A. Darmenov, M.G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A.M. da Silva, W. Gu,
    G.K. Kim, R. Koster, R. Lucchesi, D. Merkova, J.E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker,
    S.D. Schubert, M. Sienkiewicz, B. Zhao, The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Clim., 30 (2017) 5419–5454.
  39. M.G. Bosilovich, R. Lucchesi, M. Suarez, MERRA-2: File Specification, GMAO Office Note No. 9 (Version 1.1), 2016, 73 pp. Available at: http://gmao.gsfc.nasa.gov/pubs/office_notes
  40. R. Rew, G. Davis, NetCDF: an interface for scientific data access, IEEE Comput. Graphics Appl., 10 (1990) 76–82.
  41. A. Khatibi, S. Krauter, Validation and performance of satellite meteorological dataset merra-2 for solar and wind applications, Energies, 14 (2021) 882, doi: 10.3390/en14040882.
  42. S. Pfenninger, I. Staffell, Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data, Energy, 114 (2016) 1251–1265.
  43. H. Kuswanto, A. Naufal, Evaluation of performance of drought prediction in Indonesia based on TRMM and MERRA-2 using machine learning methods, MethodsX, 6 (2019) 1238–1251.
  44. E. Kayacan, B. Ulutas, O. Kaynak, Grey system theory-based models in time series prediction, Expert Syst. Appl., 37 (2010) 1784–1789.
  45. C. Chatfield, Time series forecasting with neural networks, in: Neural Networks Signal Process. – Proc. IEEE Work, 1998, pp. 419–427.
  46. J.P. Nadal, Réseaux de neurones de la physique à la psychologie, 1993, p. 152.
  47. F. Blayo, M. Verleysen, Réseaux de neurones artififiels, Frostiebek.Free.Fr., 1995.
  48. M. Parizeau, Le perceptron multicouche et son algorithme de rétropropagation des erreurs, Département Génie Electr. Génie Informatique, Univ. Laval. 1 (2004).
  49. M. Parizeau, Réseaux de neurones artificiels GIF-21140 and GIF-64326, Univ. Laval, Québec, 2015.
  50. H.D. Block, A review of perceptrons: An introduction to computational geometry, Inf. Control., 17 (1970) 501–522.
  51. R.G.M. Morris, D.O. Hebb, The Organization of Behavior, Wiley, New York; 1949, Brain Res. Bull., 50 (1999) 437.
  52. P. Cortez, M. Rocha, F. Allegro, J. Neves, Real-Time Forecasting by Bio-Inspired Models, 2002.
  53. G. Dreyfus, J. Martinez, M. Samuelides, M. Gordon, Réseaux de neurones-Méthodologie et applications, 2002.
  54. C. Paoli, C. Voyant, M. Muselli, M.L. Nivet, Forecasting of preprocessed daily solar radiation time series using neural networks, Sol. Energy, 84 (2010) 2146–2160.
  55. S.F. Crone, Stepwise selection of artificial neural network models for time series prediction, J. Intell. Syst., 14 (2005) 99–121.
  56. C.H. Aladag, M.A. Basaran, E. Egrioglu, U. Yolcu, V.R. Uslu, Forecasting in high order fuzzy times series by using neural networks to define fuzzy relations, Expert Syst. Appl., 36 (2009) 4228–4231.
  57. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Internal Representations by Error Propagation, Readings Cogn. Sci. A Perspect. from Psychol. Artif. Intell., 2013, pp. 399–421.
  58. R. Yacef, M. Benghanem, A. Mellit, Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study, Renewable Energy, 48 (2012) 146–154.
  59. F.J. Diez, L.M. Navas-Gracia, L. Chico-Santamarta, A. Correa-Guimaraes, A. Martínez-Rodríguez, Prediction of horizontal daily global solar irradiation using artificial neural networks (ANNs) in the Castile and León region, Spain, Agronomy, 10 (2020) 96, doi: 10.3390/agronomy10010096.