References
- M.H. Alsharif, M.K. Younes, Evaluation and forecasting of solar
radiation using time series adaptive
neuro-fuzzy inference
system: Seoul city as a case study, IET Renewable Power
Gener., 13 (2019) 1711–1723.
- A. Mellit, Artificial Intelligence technique for modelling
and forecasting of solar radiation data: a review, Int. J. Artif.
Intell. Soft Comput., 1 (2008) 52–76.
- D. Heinemann, E. Lorenz, M. Girodo, Forecasting of solar
radiation, in: Sol. Energy Resour. Manage. Electr. Gener. from
Local Lev. Glob. Scale, 2006, pp. 83–94.
- C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli,
F. Motte, A. Fouilloy, Machine learning methods for solar
radiation forecasting: a review, Renewable Energy, 105 (2017)
569–582.
- K. Amarouche, A. Akpınar, N.E.I. Bachari, F. Houma, Wave
energy resource assessment along the Algerian coast based on
39-year wave hindcast, Renewable Energy, 153 (2020) 840–860.
- A.B. Stambouli, Z. Khiat, S. Flazi, Y. Kitamura, A review on the
renewable energy development in Algeria: current perspective,
energy scenario and sustainability issues, Renewable
Sustainable Energy Rev., 16 (2012) 4445–4460.
- A.K. Yadav, S.S. Chandel, Solar radiation prediction using
artificial neural network techniques: a review, Renewable
Sustainable Energy Rev., 33 (2014) 772–781.
- B. Amrouche, X. Le Pivert, Artificial neural network based
daily local forecasting for global solar radiation, Appl. Energy,
130 (2014) 333–341.
- G.E. Hassan, M.E. Youssef, M.A. Ali, Z.E. Mohamed,
A.A. Hanafy, Evaluation of different sunshine-based models
for predicting global solar radiation – case study: New Borg
El-Arab City, Egypt, Therm. Sci., 22 (2018) 979–992.
- C. Voyant, C. Darras, M. Muselli, C. Paoli, M.L. Nivet, P. Poggi,
Bayesian rules and stochastic models for high accuracy
prediction of solar radiation, Appl. Energy, 114 (2014) 218–226.
- N.S. Thomaidis, F.J. Santos-Alamillos, D. Pozo-Vázquez,
J. Usaola-García, Optimal management of wind and solar
energy resources, Comput. Oper. Res., 66 (2016) 284–291.
- G. Perveen, M. Rizwan, N. Goel, Comparison of intelligent
modelling techniques for forecasting solar energy and its
application in solar PV based energy system, IET Energy Syst.
Integr., 1 (2019) 34–51.
- D. Heinemann, E. Lorenz, M. Girodo, Forecasting of solar
radiation, Sol. Energy Resour. Manag. Electr. Gener. from Local
Lev. to Glob. Scale., 2006, pp. 83–94.
- A. Zeroual, M. Ankrim, A.J. Wilkinson, Stochastic modelling of
daily global solar radiation measured in Marrakesh, Morocco,
Renewable Energy, 6 (1995) 787–793.
- K. Dagestad, Estimating Global Radiation at Ground Level from
Satellite Images, Ph.D. Thesis, University of Bergen, Norway,
2005.
- M. Muselli, P. Poggi, G. Notton, A. Louche, First order Markov
chain model for generating synthetic `typical days’ series of
global irradiation in order to design photovoltaic stand alone
systems, Energy Convers. Manage., 42 (2001) 675–687.
- D.O. Logofet, E.V. Lesnaya, The mathematics of Markov models:
What Markov chains can really predict in forest successions,
Ecol. Modell., 126 (2000) 285–298.
- A. Mellit, S.A. Kalogirou, L. Hontoria, S. Shaari, Artificial
intelligence techniques for sizing photovoltaic systems: a
review, Renewable Sustainable Energy Rev., 13 (2009) 406–419.
- J. Díaz-Gómez, A. Parrales, A. Álvarez, S. Silva-Martínez,
D. Colorado, J.A. Hernández, Prediction of global solar
radiation by artificial neural network based on a meteorological
environmental data, Desal. Water Treat., 55 (2015) 3210–3217.
- A.F. Mashaly, A.A. Alazba, Neural network approach for
predicting solar still production using agricultural drainage as
a feedwater source, Desal. Water Treat., 57 (2016) 28646–28660.
- J. Mubiru, Predicting total solar irradiation values using artificial
neural networks, Renewable Energy, 33 (2008) 2329–2332.
- S.A. Kalogirou, Artificial neural networks in renewable energy
systems applications: a review, Renewable Sustainable Energy
Rev., 5 (2000) 373–401.
- J. Mubiru, E.J.K.B. Banda, Estimation of monthly average
daily global solar irradiation using artificial neural networks,
Sol. Energy, 82 (2008) 181–187.
- F.O. Hocaoglu, Ö.N. Gerek, M. Kurban, Hourly solar radiation
forecasting using optimal coefficient 2-D linear filters and feedforward
neural networks, Sol. Energy, 82 (2008) 714–726.
- B.M. Monge Sanz, N.J. Medrano Marqués, Total ozone time
series analysis: a neural network model approach, Nonlinear
Process. Geophys., 11 (2004) 683–689.
- A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks:
a tutorial, Computer (Long. Beach. Calif), 29 (1996) 31–44.
- C. Paoli, C. Voyant, M. Muselli, M.L. Nivet, Solar Radiation
Forecasting Using Ad-hoc Time Series Preprocessing and
Neural Networks, in: Lect. Notes Comput. Sci. (Including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
2009, pp. 898–907.
- C. Voyant, M. Muselli, C. Paoli, M.L. Nivet, Optimization
of an artificial neural network dedicated to the multivariate
forecasting of daily global radiation, Energy, 36 (2011) 348–359.
- C. Voyant, M. Muselli, C. Paoli, Predictability of PV power
grid performance on insular sites without weather stations:
use of artificial neural networks, arXiv, (2009), doi: 10.4229/24thEUPVSEC2009-5BV.2.35.
- P. Serra, Short-Term Forecasting of Photovoltaic Power Plants,
Thesis, Porto University, Portugal, 2014.
- H. Mahmoudi, N. Spahis, M.F. Goosen, N. Ghaffour,
N. Drouiche, A. Ouagued, Application of geothermal energy
for heating and fresh water production in a brackish water
greenhouse desalination unit: a case study from Algeria,
Renewable Sustainable Energy Rev., 14 (2010) 512–517.
- H. Mahmoudi, S.A. Abdul-Wahab, M.F.A. Goosen, S.S. Sablani,
J. Perret, A. Ouagued, N. Spahis, Weather data and analysis of
hybrid photovoltaic-wind power generation systems adapted
to a seawater greenhouse desalination unit designed for arid
coastal countries, Desalination, 222 (2008) 119–127.
- J.W. Tester, B.J. Anderson, A.S. Batchelor, D.D. Blackwell,
R. DiPippo, E.M. Drake, J. Garnish, B. Livesay,
M.C. Moore,
K. Nichols, S. Petty, M. Nafi Toksoz, R.W. Veatch, R. Baria,
C. Augustine, E. Murphy, P. Negraru,
M. Richards, Impact
of enhanced geothermal systems on US energy supply in the
twenty-first century, Philos. Trans. R. Soc. London, Ser. A,
365 (2007) 1057–1094.
- D.A. Dehmas, N. Kherba, F.B. Hacene, N.K. Merzouk,
M. Merzouk, H. Mahmoudi, M.F.A. Goosen, On the use of
wind energy to power reverse osmosis desalination plant: a
case study from Téns (Algeria), Renewable Sustainable Energy
Rev., 15 (2011) 956–963.
- H. Mahmoudi, O. Abdellah, N. Ghaffour, Capacity building
strategies and policy for desalination using renewable energies
in Algeria, Renewable Sustainable Energy Rev., 13 (2009)
921–926.
- MERRA-2, (n.d.). https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/)
- F. Pimenta, W. Kempton, R. Garvine, Combining meteorological
stations and satellite data to evaluate the offshore wind power
resource of Southeastern Brazil, Renewable Energy, 33 (2008)
2375–2387.
- R. Gelaro, W. McCarty, M.J. Suárez, R. Todling, A. Molod,
L. Takacs, C.A. Randles, A. Darmenov, M.G. Bosilovich,
R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper,
S. Akella, V. Buchard, A. Conaty, A.M. da Silva, W. Gu,
G.K. Kim, R. Koster, R. Lucchesi, D. Merkova, J.E. Nielsen,
G. Partyka, S. Pawson, W. Putman, M. Rienecker,
S.D. Schubert,
M. Sienkiewicz, B. Zhao, The modern-era retrospective analysis
for research and applications, version 2 (MERRA-2), J. Clim.,
30 (2017) 5419–5454.
- M.G. Bosilovich, R. Lucchesi, M. Suarez, MERRA-2: File
Specification, GMAO Office Note No. 9 (Version 1.1), 2016,
73 pp. Available at: http://gmao.gsfc.nasa.gov/pubs/office_notes
- R. Rew, G. Davis, NetCDF: an interface for scientific data access,
IEEE Comput. Graphics Appl., 10 (1990) 76–82.
- A. Khatibi, S. Krauter, Validation and performance of satellite
meteorological dataset merra-2 for solar and wind applications,
Energies, 14 (2021) 882, doi: 10.3390/en14040882.
- S. Pfenninger, I. Staffell, Long-term patterns of European
PV output using 30 years of validated hourly reanalysis and
satellite data, Energy, 114 (2016) 1251–1265.
- H. Kuswanto, A. Naufal, Evaluation of performance of drought
prediction in Indonesia based on TRMM and MERRA-2 using
machine learning methods, MethodsX, 6 (2019) 1238–1251.
- E. Kayacan, B. Ulutas, O. Kaynak, Grey system theory-based
models in time series prediction, Expert Syst. Appl., 37 (2010)
1784–1789.
- C. Chatfield, Time series forecasting with neural networks,
in: Neural Networks Signal Process. – Proc. IEEE Work, 1998,
pp. 419–427.
- J.P. Nadal, Réseaux de neurones de la physique à la psychologie,
1993, p. 152.
- F. Blayo, M. Verleysen, Réseaux de neurones artififiels,
Frostiebek.Free.Fr., 1995.
- M. Parizeau, Le perceptron multicouche et son algorithme de
rétropropagation des erreurs, Département Génie Electr. Génie
Informatique, Univ. Laval. 1 (2004).
- M. Parizeau, Réseaux de neurones artificiels GIF-21140 and
GIF-64326, Univ. Laval, Québec, 2015.
- H.D. Block, A review of perceptrons: An introduction to
computational geometry, Inf. Control., 17 (1970) 501–522.
- R.G.M. Morris, D.O. Hebb, The Organization of Behavior,
Wiley, New York; 1949, Brain Res. Bull., 50 (1999) 437.
- P. Cortez, M. Rocha, F. Allegro, J. Neves, Real-Time Forecasting
by Bio-Inspired Models, 2002.
- G. Dreyfus, J. Martinez, M. Samuelides, M. Gordon, Réseaux de
neurones-Méthodologie et applications, 2002.
- C. Paoli, C. Voyant, M. Muselli, M.L. Nivet, Forecasting of
preprocessed daily solar radiation time series using neural
networks, Sol. Energy, 84 (2010) 2146–2160.
- S.F. Crone, Stepwise selection of artificial neural network
models for time series prediction, J. Intell. Syst., 14 (2005)
99–121.
- C.H. Aladag, M.A. Basaran, E. Egrioglu, U. Yolcu, V.R. Uslu,
Forecasting in high order fuzzy times series by using neural
networks to define fuzzy relations, Expert Syst. Appl., 36 (2009)
4228–4231.
- D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Internal
Representations by Error Propagation, Readings Cogn. Sci.
A Perspect. from Psychol. Artif. Intell., 2013, pp. 399–421.
- R. Yacef, M. Benghanem, A. Mellit, Prediction of daily
global solar irradiation data using Bayesian neural network:
a comparative study, Renewable Energy, 48 (2012) 146–154.
- F.J. Diez, L.M. Navas-Gracia, L. Chico-Santamarta, A. Correa-Guimaraes, A. Martínez-Rodríguez, Prediction of horizontal
daily global solar irradiation using artificial neural networks
(ANNs) in the Castile and León region, Spain, Agronomy,
10 (2020) 96, doi: 10.3390/agronomy10010096.