References
- S. Veli, B. Alyüz, Adsorption of copper and zinc from aqueous
solutions by using natural clay, J. Hazard. Mater., 149 (2007)
226–233.
- G L. Rorrer, Heavy Metal Ions, Removal From Wastewater,
R.A. Meyers, Eds., Encyclopedia of Environmental Analysis
and Remediation, Wiley, New York, 1998, pp. 2102–2125.
- L.-C. Li, R.-S. Juang, Ion-exchange equilibria of Cu(II) and
Zn(II) from aqueous solutions with Chelex 100 and Amberlite
IRC 748 resins, Chem. Eng. J., 112 (2005) 211–218.
- C.A. Nogueira, F. Delmas, New flowsheet for the recovery
of cadmium, cobalt and nickel from spent Ni–Cd batteries
by solvent extraction, Hydrometallurgy, 52 (1999) 267–287.
- B. Wassink, D. Dreisinger, J. Howard, Solvent extraction
separation of zinc and cadmium from nickel and cobalt using
Aliquat 336, a strong base anion exchanger, in the chloride
and thiocyanate forms, Hydrometallurgy, 57 (2000) 235–252.
- S. Memon, M. Yilmaz, Biscalixarenes: synthesis and
investigation of the extraction behaviour of biscalix
- arene
derivatives in a two-phase extraction system, Sep. Sci. Technol.,
36 (2001) 473–486.
- B. Gupta, A. Deep, P. Malik, Extraction and recovery of
cadmium using Cyanex 923, Hydrometallurgy, 61 (2001) 65–71.
- K. Takeshita, K. Watanabe, Y. Nakano, M. Watanabe,
Solvent extraction separation of Cd(II) and Zn(II) with the
organophosphorus extractant D2EHPA and the aqueous
nitrogen-donor ligand TPEN, Hydrometallurgy, 70 (2003)
63–71.
- K. Takeshita, K. Watanabe, Y. Nakano, M. Watanabe, Extraction
separation of Cd(II) and Zn(II) with
Cyanex 301 and aqueous
nitrogen-donor ligand TPEN, Solvent Extr. Ion Exch., 22 (2004)
203–218.
- Q. Jia, CH. Zhan, DQ. Li, CJ. Niu, Extraction of zinc(II) and
cadmium(II) by using mixtures of primary amine N1293 and
organophosphorus acids, Sep. Sci. Technol., 39 (2004) 1111–1123.
- F.J. Alguacil, Mechanistic study of active transport of copper(II)
from ammoniacal/ammonium carbonate medium using LIX
973N as a carrier across a liquid membrane, Hydrometallurgy,
61 (2001) 177–183.
- P. Venkateswaran, K. Palanivelu, Recovery of phenol from
aqueous solution by supported liquid membrane using
vegetable oils as liquid membrane, J. Hazard. Mater., 131 (2006)
146–152.
- A. Gherrou, H. Kerdjoudj, R. Molinari, E. Drioli, Facilitated
transport of Ag(I), Cu(II) and Zn(II) ions by using DB18C6 and
DA18C6 as carriers: interface behaviour on the ion transport,
Sep. Sci. Technol., 36 (2001) 2289.
- C. Hill, J.-F. Dozol, H. Rouquette, S. Eymard, B. Tournois, Study
of stability of some supported liquid membranes, J. Membr.
Sci., 114 (1996) 73–80.
- A.K. Pabby, S.S.H. Rizvi, A.M. Sastre, Handbook of
Membrane Separations Chemical, Pharmaceutical, Food and
Biotechnological Applications, CRC Press, Taylor & Francis
Group, 6000 Broken Sound Parkway NW, 2009.
- H. Inoue, M. Kagoshima, M. Yamasaki, Y. Honda, Radioactive
iodine waste treatment using electrodialysis with an anion
exchange paper membrane, Recent Adv. Multidisciplinary
Appl. Phys., 61 (2005) 795–803.
- K. Maiphetlho, L. Chimuka, H. Tutu, H. Richards, Technical
design and optimisation of polymer inclusion membranes
(PIMs) for sample pre-treatment and passive sampling – a
review, Sci. Total Environ., 799 (2021) 149483, doi: 10.1016/j.
scitotenv.2021.149483.
- D. Bożejewicz, K. Witt, M.A. Kaczorowska, The comparison
of the removal of copper(II) and zinc(II) ions from aqueous
solution using 2,6-diaminopyridine in a polymer inclusion
membrane and in a classic solvent extraction, Desal. Water
Treat., 214 (2021) 194–202.
- M. Akhond, M. Shamsipur, Specific uphill transport of Cd2C
ion by a cooperative carrier composed of containing aza-18-
crown-6 and palmitic acid, J. Membr. Sci., 117 (1996) 221–226.
- A.J. Schow, R.T. Peterson, J.D. Lamb, Polymer inclusion
membranes containing macrocyclic carriers for use in cation
separations, J. Membr. Sci., 111 (1996) 291–295.
- T. Fyles, Polymer Membrane for Proton Driven Ion Transport,
1990 U.S. Patent 4,906,376.
- E.L. Cussler, R. Aris, A. Brown, On the limits of facilitated
diffusion, J. Membr. Sci., 43 (1989) 149–164.
- R.D. Noble, Generalized microscopic mechanism of facilitated
transport in fixed site carrier membranes, J. Membr. Sci.,
75 (1992) 121–129.
- P. Lacan, C. Guizard, P.L. Gall, D. Wettling, L. Cot, Facilitated
transport of ions through fixed-site carrier membranes derived
from hybrid organic–inorganic materials, J. Membr. Sci.,
100 (1995) 99–109.
- Y.S. Kang, J.-M. Hong, J. Jang, U.Y. Kim, Analysis of facilitated
transport in solid membranes with fixed site carriers. 1. Single
RC circuit model, J. Membr. Sci., 109 (1996) 149–157.
- J.M. Hong, Y.S. Kang, J. Jang, U.Y. Kim, Analysis of facilitated
transport in polymeric membrane with fixed site carrier. 2.
Series RC circuit model, J. Membr. Sci., 109 (1996) 159–163.
- J.D.W. McBride, R.M. Izatt, J.D. Lamb, J.J. Christensen, Inclusion
Compounds III, Academic Press, London, 1984, pp. 571–628.
- C. Belabed, N. Haine, Z. Benabdelghani, B. Bellal, M. Trari,
Photocatalytic hydrogen evolution on the hetero-system
polypyrrol/TiO2 under visible light, Int. J. Hydrogen Energy,
39 (2014) 17533–17539.
- D. Meziani, K. Abdelmeziem, S. Bouacida, M. Trari, Photoelectrochemical
and physical characterizations of a new single
crystal POM-based material. Application in photocatalysis,
J. Mol. Struct., 1125 (2016) 540–545.
- D. Meziani, K. Abdelmeziem, S. Bouacida, M. Trari, H. Merazig,
Photo-electrochemical and physical characterizations of
a new single crystal POM-used material. Application to
Rhodamine B photodegradation, Sol. Energy Mater. Sol. Cells,
147 (2016) 46–52.
- G. Rekhila, Y. Bessekhouad, M. Trari, Hydrogen evolution under
visible light over the solid solution NiFe2–xMnxO4 prepared by
sol–gel, Int. J. Hydrogen Energy, 40 (2015) 12611–12618.
- B. An, T.R. Steinwinder, D. Zhao, Selective removal of arsenate
from drinking water using a polymeric ligand exchanger, Water
Res., 39 (2005) 4993–5004.
- S. Omeiri, Y. Gabes, A. Bouguelia, M. Trari, Photoelectrochemical
characterization of the delafossite CuFeO2:
application to removal of divalent metals ions, J. Electroanal.
Chem., 614 (2008) 31–40.
- M. Sugiura, M. Kikkawa, S. Urita, Carrier-mediated transport
of rare earth ions through cellulose triacetate membranes,
J. Membr. Sci., 42 (1989) 47–55.
- L.D. Nghiema, P. Mornanea, I.D. Potter, J.M. Perera,
R.W. Cattrall, S.D. Kolev, Extraction and transport of metal
ions and small organic compounds using polymer inclusion
membranes (PIMs), J. Membr. Sci., 281 (2006) 7–41.
- I.C. McNeill, S. Ahmed, L. Memetea, Thermal degradation of
vinyl acetate-methacrylic acid copolymer and homopolymers.
I. An FTIR spectroscopic investigation of structural changes
in the degrading material, Polym. Degrad. Stab., 47 (1995)
423–433.
- S.C. Christopher, F.P. Stephan, Y. Hu, W.A. Mark, P.C. Painter,
M.M. Coleman, Infrared characterization and determination
of self-association equilibrium constants for methacrylic acid
copolymers, J. Macromol. Sci. Part B Phys., 39 (2000) 197–223.
- D.H. Grant, N. Grassie, The thermal decomposition of
polymethacrylic acid, Polymer, 2 (1960) 125–134.