References

  1. S. Veli, B. Alyüz, Adsorption of copper and zinc from aqueous solutions by using natural clay, J. Hazard. Mater., 149 (2007) 226–233.
  2. G L. Rorrer, Heavy Metal Ions, Removal From Wastewater, R.A. Meyers, Eds., Encyclopedia of Environmental Analysis and Remediation, Wiley, New York, 1998, pp. 2102–2125.
  3. L.-C. Li, R.-S. Juang, Ion-exchange equilibria of Cu(II) and Zn(II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins, Chem. Eng. J., 112 (2005) 211–218.
  4. C.A. Nogueira, F. Delmas, New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni–Cd batteries by solvent extraction, Hydrometallurgy, 52 (1999) 267–287.
  5. B. Wassink, D. Dreisinger, J. Howard, Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride and thiocyanate forms, Hydrometallurgy, 57 (2000) 235–252.
  6. S. Memon, M. Yilmaz, Biscalixarenes: synthesis and investigation of the extraction behaviour of biscalix
  7. arene derivatives in a two-phase extraction system, Sep. Sci. Technol., 36 (2001) 473–486.
  8. B. Gupta, A. Deep, P. Malik, Extraction and recovery of cadmium using Cyanex 923, Hydrometallurgy, 61 (2001) 65–71.
  9. K. Takeshita, K. Watanabe, Y. Nakano, M. Watanabe, Solvent extraction separation of Cd(II) and Zn(II) with the organophosphorus extractant D2EHPA and the aqueous nitrogen-donor ligand TPEN, Hydrometallurgy, 70 (2003) 63–71.
  10. K. Takeshita, K. Watanabe, Y. Nakano, M. Watanabe, Extraction separation of Cd(II) and Zn(II) with
    Cyanex 301 and aqueous nitrogen-donor ligand TPEN, Solvent Extr. Ion Exch., 22 (2004) 203–218.
  11. Q. Jia, CH. Zhan, DQ. Li, CJ. Niu, Extraction of zinc(II) and cadmium(II) by using mixtures of primary amine N1293 and organophosphorus acids, Sep. Sci. Technol., 39 (2004) 1111–1123.
  12. F.J. Alguacil, Mechanistic study of active transport of copper(II) from ammoniacal/ammonium carbonate medium using LIX 973N as a carrier across a liquid membrane, Hydrometallurgy, 61 (2001) 177–183.
  13. P. Venkateswaran, K. Palanivelu, Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane, J. Hazard. Mater., 131 (2006) 146–152.
  14. A. Gherrou, H. Kerdjoudj, R. Molinari, E. Drioli, Facilitated transport of Ag(I), Cu(II) and Zn(II) ions by using DB18C6 and DA18C6 as carriers: interface behaviour on the ion transport, Sep. Sci. Technol., 36 (2001) 2289.
  15. C. Hill, J.-F. Dozol, H. Rouquette, S. Eymard, B. Tournois, Study of stability of some supported liquid membranes, J. Membr. Sci., 114 (1996) 73–80.
  16. A.K. Pabby, S.S.H. Rizvi, A.M. Sastre, Handbook of Membrane Separations Chemical, Pharmaceutical, Food and Biotechnological Applications, CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, 2009.
  17. H. Inoue, M. Kagoshima, M. Yamasaki, Y. Honda, Radioactive iodine waste treatment using electrodialysis with an anion exchange paper membrane, Recent Adv. Multidisciplinary Appl. Phys., 61 (2005) 795–803.
  18. K. Maiphetlho, L. Chimuka, H. Tutu, H. Richards, Technical design and optimisation of polymer inclusion membranes (PIMs) for sample pre-treatment and passive sampling – a review, Sci. Total Environ., 799 (2021) 149483, doi: 10.1016/j. scitotenv.2021.149483.
  19. D. Bożejewicz, K. Witt, M.A. Kaczorowska, The comparison of the removal of copper(II) and zinc(II) ions from aqueous solution using 2,6-diaminopyridine in a polymer inclusion membrane and in a classic solvent extraction, Desal. Water Treat., 214 (2021) 194–202.
  20. M. Akhond, M. Shamsipur, Specific uphill transport of Cd2C ion by a cooperative carrier composed of containing aza-18- crown-6 and palmitic acid, J. Membr. Sci., 117 (1996) 221–226.
  21. A.J. Schow, R.T. Peterson, J.D. Lamb, Polymer inclusion membranes containing macrocyclic carriers for use in cation separations, J. Membr. Sci., 111 (1996) 291–295.
  22. T. Fyles, Polymer Membrane for Proton Driven Ion Transport, 1990 U.S. Patent 4,906,376.
  23. E.L. Cussler, R. Aris, A. Brown, On the limits of facilitated diffusion, J. Membr. Sci., 43 (1989) 149–164.
  24. R.D. Noble, Generalized microscopic mechanism of facilitated transport in fixed site carrier membranes, J. Membr. Sci., 75 (1992) 121–129.
  25. P. Lacan, C. Guizard, P.L. Gall, D. Wettling, L. Cot, Facilitated transport of ions through fixed-site carrier membranes derived from hybrid organic–inorganic materials, J. Membr. Sci., 100 (1995) 99–109.
  26. Y.S. Kang, J.-M. Hong, J. Jang, U.Y. Kim, Analysis of facilitated transport in solid membranes with fixed site carriers. 1. Single RC circuit model, J. Membr. Sci., 109 (1996) 149–157.
  27. J.M. Hong, Y.S. Kang, J. Jang, U.Y. Kim, Analysis of facilitated transport in polymeric membrane with fixed site carrier. 2. Series RC circuit model, J. Membr. Sci., 109 (1996) 159–163.
  28. J.D.W. McBride, R.M. Izatt, J.D. Lamb, J.J. Christensen, Inclusion Compounds III, Academic Press, London, 1984, pp. 571–628.
  29. C. Belabed, N. Haine, Z. Benabdelghani, B. Bellal, M. Trari, Photocatalytic hydrogen evolution on the hetero-system polypyrrol/TiO2 under visible light, Int. J. Hydrogen Energy, 39 (2014) 17533–17539.
  30. D. Meziani, K. Abdelmeziem, S. Bouacida, M. Trari, Photoelectrochemical and physical characterizations of a new single crystal POM-based material. Application in photocatalysis, J. Mol. Struct., 1125 (2016) 540–545.
  31. D. Meziani, K. Abdelmeziem, S. Bouacida, M. Trari, H. Merazig, Photo-electrochemical and physical characterizations of a new single crystal POM-used material. Application to Rhodamine B photodegradation, Sol. Energy Mater. Sol. Cells, 147 (2016) 46–52.
  32. G. Rekhila, Y. Bessekhouad, M. Trari, Hydrogen evolution under visible light over the solid solution NiFe2–xMnxO4 prepared by sol–gel, Int. J. Hydrogen Energy, 40 (2015) 12611–12618.
  33. B. An, T.R. Steinwinder, D. Zhao, Selective removal of arsenate from drinking water using a polymeric ligand exchanger, Water Res., 39 (2005) 4993–5004.
  34. S. Omeiri, Y. Gabes, A. Bouguelia, M. Trari, Photoelectrochemical characterization of the delafossite CuFeO2: application to removal of divalent metals ions, J. Electroanal. Chem., 614 (2008) 31–40.
  35. M. Sugiura, M. Kikkawa, S. Urita, Carrier-mediated transport of rare earth ions through cellulose triacetate membranes, J. Membr. Sci., 42 (1989) 47–55.
  36. L.D. Nghiema, P. Mornanea, I.D. Potter, J.M. Perera, R.W. Cattrall, S.D. Kolev, Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs), J. Membr. Sci., 281 (2006) 7–41.
  37. I.C. McNeill, S. Ahmed, L. Memetea, Thermal degradation of vinyl acetate-methacrylic acid copolymer and homopolymers. I. An FTIR spectroscopic investigation of structural changes in the degrading material, Polym. Degrad. Stab., 47 (1995) 423–433.
  38. S.C. Christopher, F.P. Stephan, Y. Hu, W.A. Mark, P.C. Painter, M.M. Coleman, Infrared characterization and determination of self-association equilibrium constants for methacrylic acid copolymers, J. Macromol. Sci. Part B Phys., 39 (2000) 197–223.
  39. D.H. Grant, N. Grassie, The thermal decomposition of polymethacrylic acid, Polymer, 2 (1960) 125–134.