References

  1. R.F. Foda, A.G. Awadallah, M.A. Gad, A fast semi distributed rainfall runoff model for engineering applications in arid and semi-arid regions, Water Resour. Manage., 31 (2017) 4941–4955.
  2. J.A. Cirilo, L.F.M. Verçosa, M.M.A. Gomes, M.A.B. Feitoza, G.F. Ferraz, B.M. Silva, Development and application of a rainfall-runoff model for semi-arid regions, Braz. J. Water Resour., 25 (2020) 1–19,
    doi: 10.1590/2318-0331.252020190106.
  3. G. Chen, W. Hua, X. Fang, C. Wang, X. Li, Distributedframework basin modeling system: II. hydrologic modeling system, Water, 13 (2021) 744, doi: 10.3390/w13050744.
  4. K. Beven, Rainfall-Runoff Modelling, John Wiley & Sons, Ltd., Wiley-Blackwell, 2012.
  5. P. Deb, A.S. Kiem, Evaluation of rainfall–runoff model performance under non-stationary hydroclimatic conditions, Hydrol. Sci. J., 65 (2020) 1667–1684.
  6. K. Lavtar, N. Bezak, M. Šraj, Rainfall-runoff modeling of the nested non-homogeneous sava river sub-catchments in Slovenia, Water (Switzerland), 12 (2020) 128, doi: 10.3390/ w12010128.
  7. W. Ben Khélifa, M. Mosbahi, Modeling of rainfall-runoff process using HEC-HMS model for an urban ungauged watershed in Tunisia, Model. Earth Syst. Environ., (2021), doi: 10.1007/ s40808-021-01177-6.
  8. M.A. Mohammad Razi, J. Ariffin, W. Tahir, N.A.M. Arish, Flood estimation studies using hydrologic modeling system (HECHMS) for Johor River, Malaysia, J. Appl. Sci., 11 (2010) 930–939.
  9. J. Joo, T. Kjeldsen, H.J. Kim, H. Lee, A comparison of two eventbased flood models (ReFH-rainfall runoff model and HECHMS) at two Korean catchments, Bukil and Jeungpyeong, KSCE J. Civ. Eng., 18 (2014) 330–343.
  10. W. Gumindoga, D.T. Rwasoka, I. Nhapi, T. Dube, Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: application of the HEC-HMS model, Phys. Chem. Earth, 100 (2017) 371–382.
  11. Y. Tang, A.S. Leon, M.L. Kavvas, Impact of size and location of wetlands on watershed-scale flood control, Water Resour. Manage., 34 (2020) 1693–1707.
  12. I.D. Skhakhfa, L. Ouerdachi, Hydrological modelling of Wadi Ressoul Watershed, Algeria, by HEC-HMS model, J. Water Land Dev., 31 (2016) 139–147.
  13. E.H. Mokhtari, B. Remini, S.A. Hamoudi, Modelling of the rainflow by hydrological modelling software system HEC-HMS watershed’s case of Wadi Cheliff-Ghrib, Algeria, J. Water Land Dev., 30 (2016) 87–100.
  14. A. Derdour, A. Bouanani, K. Babahamed, Hydrological modeling in semi-arid region using HEC-HMS model. case study in Ain Sefra watershed, Ksour Mountains (SW-Algeria), J. Fundam. Appl. Sci., 9 (2017) 1027–1049.
  15. A.N.A. Hamdan, S. Almuktar, M. Scholz, Rainfall-runoff modeling using the HEC-HMS model for the Al-Adhaim river catchment, Northern Iraq, Hydrology, 8 (2021) 58, doi: 10.3390/hydrology8020058.
  16. E. Abushandi, B. Merkel, Modelling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an Arid Region of Jordan, Water Resour. Manage., 27 (2013) 2391–2409.
  17. M.A. Al-Zahrani, Assessing the impacts of rainfall intensity and urbanization on storm runoff in an arid catchment, Arabian J. Geosci., 11 (2018), doi: 10.1007/s12517-018-3569-4.
  18. M. Azmat, M.U. Qamar, S. Ahmed, E. Hussain, M. Umair, Application of HEC-HMS for the event and continuous simulation in high-altitude scarcely-gauged catchment under changing climate, Eur. Water, 57 (2017) 77–84.
  19. D. Halwatura, M.M.M. Najim, Application of the HEC-HMS model for runoff simulation in a tropical catchment, Environ. Modell. Software, 46 (2013) 155–162.
  20. K. Ibrahim-Bathis, S.A. Ahmed, Rainfall-runoff modelling of Doddahalla watershed—an application
    of HEC-HMS and SCN-CN in ungauged agricultural watershed, Arabian J. Geosci., 9 (2016) 1–16.
  21. F. Laouacheria, R. Mansouri, Comparison of WBNM and HEC-HMS for runoff hydrograph prediction in a small urban catchment, Water Resour. Manage., 29 (2015) 2485–2501.
  22. B.G. Tassew, M.A. Belete, K. Miegel, Modeling water quality parameters using data-driven models, a case study Abu-Ziriq marsh in south of Iraq, Hydrology, 6 (2019), doi: 10.3390/hydrology6010024.
  23. A. Alonzo Steinmetz, S. Beskow, F. da Silva Terra, M. Cândida Moitinho Nunes, M. Martins Vargas, J. Francisco Carlexo Horn, Spatial discretization influence on flood modeling using Unit Hydrograph Theory Influência da discretização espacial na modelagem de cheia utilizando a teoria do hidrograma unitá, Braz. J. Water Resour., 24 (2019) 1–12, doi: 10.1590/2318-0331.241920180143.
  24. A. Wałe¸ga, Application of HEC-HMS programme for the reconstruction of a flood event in an uncontrolled basin, J. Water Land Dev., 18 (2013) 13–20.
  25. M.M.G.T. De Silva, S.B. Weerakoon, S. Herath, Modeling of event and continuous flow hydrographs with HEC–HMS: case study in the Kelani River Basin, Sri Lanka, J. Hydrol. Eng., 19 (2014) 800–806.
  26. A.B. Dariane, M.M. Javadianzadeh, L.D. James, Developing an efficient auto-calibration algorithm for HEC-HMS program, Water Resour. Manage., 30 (2016) 1923–1937.
  27. A. Benkhaled, B. Remini, Variabilité temporelle de la concentration en sédiments et phénomène d’hystérésis dans le bassin de l’Oued Wahrane (Algérie), Hydrol. Sci. J., 48 (2003) 243–255.
  28. Y. Elmeddahi, M. Remaoun, S. Abaidia, A. Issadi, Variabilité climatique et détection de tendance dans la relation pluie-débit pour l’évaluation des risques de sécheresse dans le bassin de l’oued Ouahrane (Algerie), Tech. Sci. Méthodes., 111 (2016) 141–164.
  29. M. Azam, H.S. Kim, S.J. Maeng, Development of flood alert application in Mushim stream watershed Korea, Int. J. Disaster Risk Reduct., 21 (2017) 11–26.
  30. T.C. Moraes, V.J. dos Santos, M.L. Calijuri, F.T.P. Torres, Effects on runoff caused by changes in land cover in a Brazilian southeast basin: evaluation by HEC-HMS and HEC-GEOHMS, Environ. Earth Sci., 77 (2018) 1–14.
  31. USACE, Hydrologic Modeling System User’s Manual, Transform., 2018, p. 624.
  32. USDA, Urban Hydrology for Small Watersheds, Soil Conserv., 1986, pp. 1–164.
  33. A. Ahbari, L. Stour, A. Agoumi, N. Serhir, Sensitivity of the HMS model to various modelling characteristics: case study of Bin El Ouidane basin (High Atlas of Morocco), Arabian J. Geosci., 11 (2018), doi:10.1007/s12517-018-3911-x.
  34. A.D. Feldman, Hydrologic Modeling System Technical Reference Manual, Hydrol. Model. Syst. HEC-HMS Tech. Ref. Man., 2000, p. 148.
  35. J. Nash, I. Sutcliffe, River flow forecasting through conceptual models part I – a discussion of principals, J. Hydrol., 10 (1970) 282–290.
  36. D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith, Model evaluation guidelines for systematic quantification of accuracy in wateshed simulations, Am. Soc. Agric. Biol. Eng., 50 (2007) 885–900.
  37. A. Derdour, A. Bouanani, Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: case study of Ain Sefra city, Ksour Mountain. SW of Algeria, Environ. Earth Sci., 78 (2019).
  38. M. Gharib, B. Motamedvaziri, B. Ghermezcheshmeh, H. Ahmadi, Evaluation of ModClark model for simulating rainfall-runoff in Tangrah watershed, Iran, Appl. Ecol. Environ. Res., 16 (2018) 1053–1068.