References

  1. K. Konieczny, G. Klomfas, Using activated carbon to improve natural water treatment by porous membranes, Desalination, 147 (2002) 109–116.
  2. O. Al-Abbasi, M.B. Shams, Dynamic CFD modelling of an industrial-scale dead-end ultrafiltration system: full cycle and complete blockage, J. Water Process Eng., 40 (2021) 101887, doi: 10.1016/j.jwpe.2020.101887.
  3. J. Garcia-Ivars, M.-I. Alcaina-Miranda, M.-I. Iborra-Clar, J.-A. Mendoza-Roca, L. Pastor-Alcañiz, Enhancement in hydrophilicity of different polymer phase-inversion ultrafiltration membranes by introducing PEG/Al2O3 nanoparticles, Sep. Purif. Technol., 128 (2014) 45–57.
  4. M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Springer Science & Business Media, Germany, 2012.
  5. A. Nqombolo, A. Mpupa, R.M. Moutloali, P.N. Nomngongo, Wastewater Treatment Using Membrane Technology, T. Yonar, Eds., Wastewater and Water Quality, IntechOpen Book Series, 2018, pp. 29–38.
  6. M. Pakbaz, Z. Maghsoud, Performance evaluation of polyvinylchloride/polyacrylonitrile ultrafiltration blend membrane, Iran. Polym. J., 26 (2017) 833–849.
  7. E. Arkhangelsky, A. Duek, V. Gitis, Maximal pore size in UF membranes, J. Membr. Sci., 394 (2012) 89–97.
  8. L. Shen, X. Bian, X. Lu, L. Shi, Z. Liu, L. Chen, Z. Hou, K. Fan, Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes, Desalination, 293 (2012) 21–29.
  9. X. Tan, D. Rodrigue, A review on porous polymeric membrane preparation. Part I: production techniques with polysulfone and poly (vinylidene fluoride), Polymers, 11 (2019) 1160, doi: 10.3390/polym11071160.
  10. M.S.S.A. Saraswathi, A. Nagendran, D. Rana, Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: a review, J. Mater. Chem. A, 7 (2019) 8723–8745.
  11. H. Strathmann, K. Kock, The formation mechanism of phase inversion membranes, Desalination, 21 (1977) 241–255.
  12. C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids, J. Membr. Sci., 73 (1992) 259–275.
  13. T.H. Young, L.W. Chen, Pore formation mechanism of membranes from phase inversion process, Desalination, 103 (1995) 233–247.
  14. L. Yilmaz, A.J. McHugh, Analysis of nonsolvent–solvent–polymer phase diagrams and their relevance to membrane formation modeling, J. Appl. Polym. Sci., 31 (1986) 997–1018.
  15. J. Xu, Z.L. Xu, Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/ solvent, J. Membr. Sci., 208 (2002) 203–212.
  16. Q. Alsalhy, S. Algebory, G.M. Alwan, S. Simone, A. Figoli, E. Drioli, Hollow fiber ultrafiltration membranes from poly(vinyl chloride): preparation, morphologies, and properties, Sep. Sci. Technol., 46 (2011) 2199–2210.
  17. S. Hirose, A. Shimizu, T. Nose, Preparation and structures of the poly(vinyl chloride) porous membranes,
    J. Appl. Polym. Sci., 23 (1979) 3193–3204.
  18. S. Mei, C. Xiao, X. Hu, Preparation of porous PVC membrane via a phase inversion method from PVC/DMAc/water/additives, J. Appl. Polym. Sci., 120 (2011) 557–562.
  19. K.M. Persson, V. Gekas, G. Trägårdh, Study of membrane compaction and its influence on ultrafiltration water permeability, J. Membr. Sci., 100 (1995) 155–162.
  20. R. Ghidossi, J.V. Daurelle, D. Veyret, P. Moulin, Simplified CFD approach of a hollow fiber ultrafiltration system, Chem. Eng. J., 123 (2006) 117–125.
  21. O. Al-Abbasi, M.B. Shams, Transient CFD Modelling of a Full Cycle Dead-End Ultrafiltration Membrane, 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), IEEE, Manama, Bahrain, 2019, pp. 1–4.
  22. S. Buetehorn, D. Volmering, K. Vossenkaul, T. Wintgens, M. Wessling, T. Melin, CFD simulation of single- and multiphase flows through submerged membrane units with irregular fiber arrangement, J. Membr. Sci., 384 (2011) 184–197.
  23. M.H. Faghihi, Effect of Pore Geometry on Membrane Flux Decline Due to Pore Constriction by Particles in Ultra and Micro Filtration (Doctoral Dissertation, Université d’Ottawa/ University of Ottawa), 2013.
  24. M. Shi, G. Printsypar, O. Iliev, V.M. Calo, G.L. Amy, S.P. Nunes, Water flow prediction for membranes using 3D simulations with detailed morphology, J. Membr. Sci., 487 (2015) 19–31.
  25. H. Zhao, S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes, J. Membr. Sci., 450 (2014) 249–256.
  26. A. Gotzias, The effect of gme topology on multicomponent adsorption in zeolitic imidazolate frameworks, Phys. Chem. Chem. Phys., 19 (2017) 871–877.
  27. M.F. Bopape, T.V. Geel, A. Dutta, B.V. der Bruggen, M.S. Onyango, Numerical modelling assisted design of a compact ultrafiltration (UF) flat sheet membrane module, Membranes, 11 (2021) 54, doi:10.3390/membranes11010054.
  28. E. Demirel, B. Zhang, M. Papakyriakou, X. Shuman, Y. Chen, Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance, J. Membr. Sci., 529 (2017) 170–184.
  29. M.T.M. Pendergast, J.M. Nygaard, A.K. Ghosh, E.M.V. Hoek, Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction, Desalination, 261 (2010) 255–263.
  30. J. Lee, H. Yoon, J.H. Yoo, D.C. Choi, C.H. Nahm, S.H. Lee, H.-R. Chae, Y.H. Kim, C.-H. Lee, P.-K. Park, Influence of the sublayer structure of thin-film composite reverse osmosis membranes on the overall water flux, Environ. Sci. Water Res. Technol., 4 (2018) 1912–1922.
  31. B.M. Erdugan, S. Dadashov, E. Demirel, E. Suvaci, Effect of polymer type on the characteristics of ZnO embedded nanocomposite membranes, Desal. Water Treat., 213 (2021) 159–176.