References
- K. Konieczny, G. Klomfas, Using activated carbon to improve
natural water treatment by porous membranes, Desalination,
147 (2002) 109–116.
- O. Al-Abbasi, M.B. Shams, Dynamic CFD modelling of an
industrial-scale dead-end ultrafiltration system: full cycle and
complete blockage, J. Water Process Eng., 40 (2021) 101887,
doi: 10.1016/j.jwpe.2020.101887.
- J. Garcia-Ivars, M.-I. Alcaina-Miranda, M.-I. Iborra-Clar,
J.-A. Mendoza-Roca, L. Pastor-Alcañiz, Enhancement in hydrophilicity
of different polymer phase-inversion ultrafiltration
membranes by introducing PEG/Al2O3 nanoparticles, Sep.
Purif. Technol., 128 (2014) 45–57.
- M. Mulder, Basic Principles of Membrane Technology, 2nd ed.,
Springer Science & Business Media, Germany, 2012.
- A. Nqombolo, A. Mpupa, R.M. Moutloali, P.N. Nomngongo,
Wastewater Treatment Using Membrane Technology, T. Yonar,
Eds., Wastewater and Water Quality, IntechOpen Book Series,
2018, pp. 29–38.
- M. Pakbaz, Z. Maghsoud, Performance evaluation of polyvinylchloride/polyacrylonitrile ultrafiltration blend membrane,
Iran. Polym. J., 26 (2017) 833–849.
- E. Arkhangelsky, A. Duek, V. Gitis, Maximal pore size in UF
membranes, J. Membr. Sci., 394 (2012) 89–97.
- L. Shen, X. Bian, X. Lu, L. Shi, Z. Liu, L. Chen, Z. Hou, K. Fan,
Preparation and characterization of ZnO/polyethersulfone
(PES) hybrid membranes, Desalination, 293 (2012) 21–29.
- X. Tan, D. Rodrigue, A review on porous polymeric membrane
preparation. Part I: production techniques with polysulfone
and poly (vinylidene fluoride), Polymers, 11 (2019) 1160,
doi: 10.3390/polym11071160.
- M.S.S.A. Saraswathi, A. Nagendran, D. Rana, Tailored polymer
nanocomposite membranes based on carbon, metal oxide and
silicon nanomaterials: a review, J. Mater. Chem. A, 7 (2019)
8723–8745.
- H. Strathmann, K. Kock, The formation mechanism of phase
inversion membranes, Desalination, 21 (1977) 241–255.
- C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk,
Microstructures in phase-inversion membranes. Part 1.
Formation of macrovoids, J. Membr. Sci., 73 (1992) 259–275.
- T.H. Young, L.W. Chen, Pore formation mechanism of
membranes from phase inversion process, Desalination,
103 (1995) 233–247.
- L. Yilmaz, A.J. McHugh, Analysis of nonsolvent–solvent–polymer phase diagrams and their relevance to membrane
formation modeling, J. Appl. Polym. Sci., 31 (1986) 997–1018.
- J. Xu, Z.L. Xu, Poly(vinyl chloride) (PVC) hollow fiber
ultrafiltration membranes prepared from PVC/additives/
solvent, J. Membr. Sci., 208 (2002) 203–212.
- Q. Alsalhy, S. Algebory, G.M. Alwan, S. Simone, A. Figoli,
E. Drioli, Hollow fiber ultrafiltration membranes from poly(vinyl
chloride): preparation, morphologies, and properties, Sep. Sci.
Technol., 46 (2011) 2199–2210.
- S. Hirose, A. Shimizu, T. Nose, Preparation and structures of the
poly(vinyl chloride) porous membranes,
J. Appl. Polym. Sci.,
23 (1979) 3193–3204.
- S. Mei, C. Xiao, X. Hu, Preparation of porous PVC membrane via
a phase inversion method from PVC/DMAc/water/additives,
J. Appl. Polym. Sci., 120 (2011) 557–562.
- K.M. Persson, V. Gekas, G. Trägårdh, Study of membrane
compaction and its influence on ultrafiltration water
permeability, J. Membr. Sci., 100 (1995) 155–162.
- R. Ghidossi, J.V. Daurelle, D. Veyret, P. Moulin, Simplified CFD
approach of a hollow fiber ultrafiltration system, Chem. Eng. J.,
123 (2006) 117–125.
- O. Al-Abbasi, M.B. Shams, Transient CFD Modelling of a
Full Cycle Dead-End Ultrafiltration Membrane, 2019 8th
International Conference on Modeling Simulation and Applied
Optimization (ICMSAO), IEEE, Manama, Bahrain, 2019,
pp. 1–4.
- S. Buetehorn, D. Volmering, K. Vossenkaul, T. Wintgens,
M. Wessling, T. Melin, CFD simulation of single- and multiphase
flows through submerged membrane units with irregular
fiber arrangement, J. Membr. Sci., 384 (2011) 184–197.
- M.H. Faghihi, Effect of Pore Geometry on Membrane Flux
Decline Due to Pore Constriction by Particles in Ultra and
Micro Filtration (Doctoral Dissertation, Université d’Ottawa/
University of Ottawa), 2013.
- M. Shi, G. Printsypar, O. Iliev, V.M. Calo, G.L. Amy, S.P. Nunes,
Water flow prediction for membranes using 3D simulations
with detailed morphology, J. Membr. Sci., 487 (2015) 19–31.
- H. Zhao, S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Improving
the performance of polyamide reverse osmosis membrane by
incorporation of modified multi-walled carbon nanotubes,
J. Membr. Sci., 450 (2014) 249–256.
- A. Gotzias, The effect of gme topology on multicomponent
adsorption in zeolitic imidazolate frameworks, Phys. Chem.
Chem. Phys., 19 (2017) 871–877.
- M.F. Bopape, T.V. Geel, A. Dutta, B.V. der Bruggen,
M.S. Onyango, Numerical modelling assisted design of a
compact ultrafiltration (UF) flat sheet membrane module,
Membranes, 11 (2021) 54, doi:10.3390/membranes11010054.
- E. Demirel, B. Zhang, M. Papakyriakou, X. Shuman, Y. Chen,
Fe2O3 nanocomposite PVC membrane with enhanced properties
and separation performance, J. Membr. Sci., 529 (2017) 170–184.
- M.T.M. Pendergast, J.M. Nygaard, A.K. Ghosh, E.M.V. Hoek,
Using nanocomposite materials technology to understand and
control reverse osmosis membrane compaction, Desalination,
261 (2010) 255–263.
- J. Lee, H. Yoon, J.H. Yoo, D.C. Choi, C.H. Nahm, S.H. Lee,
H.-R. Chae, Y.H. Kim, C.-H. Lee, P.-K. Park, Influence of the
sublayer structure of thin-film composite reverse osmosis
membranes on the overall water flux, Environ. Sci. Water Res.
Technol., 4 (2018) 1912–1922.
- B.M. Erdugan, S. Dadashov, E. Demirel, E. Suvaci, Effect
of polymer type on the characteristics of ZnO embedded
nanocomposite membranes, Desal. Water Treat., 213 (2021)
159–176.