References
- L. Pietrelli, I. Francolini, A. Piozzi, M. Sighicelli, I. Silvestro,
M. Vocciante, Chromium(III) removal from wastewater by
chitosan flakes, Appl. Sci., 10 (2020) 1925, doi: 10.3390/app10061925.
- W. Liu, H. Chen, A.G.L. Borthwick, Y. Han, J. Ni, Mutual
promotion mechanism for adsorption of coexisting Cr(III)
and Cr(VI) onto titanate nanotubes, Chem. Eng. J., 232 (2013)
228–236.
- S.L. Han, Y.A. Zang, Y. Gao, Q.Y. Yue, P. Zhang, W.J. Kong,
B. Jin, X. Xu, B.Y. Gao, Co-monomer polymer anion exchange
resin for removing Cr(VI) contaminants: adsorption kinetics,
mechanism and performance, Sci. Total Environ., 709 (2020)
1–10, doi: 10.1016/j.scitotenv.2019.136002.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- X. Du, C. Kishima, H. Zhang, N. Miyamoto, N. Kano, Removal
of chromium(VI) by chitosan beads modified with sodium
dodecyl sulfate (SDS), Appl. Sci., 10 (2020) 4745, doi: 10.3390/
app10144745.
- K. Yamada, Y. Ishiguro, Y. Kimura, H. Asamoto, H. Minamisawa,
Two-step grafting of 2-hydroxyethyl methacrylate (HEMA)
and 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto a
polyethylene plate for enhancement of Cr(VI) ion adsorption,
Environ. Technol., 40 (2019) 855–869.
- Z. Cui, Y. Xiang, J. Si, M. Yang, Z. Qi, Z. Tao, Ionic interactions
between sulfuric acid and chitosan membranes, Carbohydr.
Polym., 73 (2008) 111–116.
- N. Boudouaia, Z. Bengharez, S. Jellali, Preparation and
characterization of chitosan extracted from shrimp shells
waste and chitosan film: application for Eriochrome black T
removal from aqueous solutions, Appl. Water Sci., 9 (2019) 1–12,
doi: 10.1007/s13201-019-0967-z.
- E. Khor, L.Y. Lim, Implantable applications of chitin and
chitosan, Biomaterials, 24 (2003) 2339–2349.
- L. Illum, Chitosan and its use as a pharmaceutical excipient,
Pharm. Res., 15 (2003) 1326–1331.
- M.N.V. Ravi Kumar, A review of chitin and chitosan applications,
React. Funct. Polym., 46 (2000) 1–27.
- S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabhavi, Recent
advances on chitosan-based micro- and nanoparticles in drug
delivery, J. Controlled Release, 100 (2004) 5–28.
- V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria,
K. Bansal, S. Dhawan, Chitosan microspheres as a potential
carrier for drugs, Int. J. Pharm., 274 (2004) 1–33.
- S.-H. Lim, S.M. Hudson, Synthesis and antimicrobial activity of
a water-soluble chitosan derivative
with a fiber-reactive group,
Carbohydr. Res., 339 (2004) 313–319.
- A.S. Shete, A.V. Yadav, S.M. Murthy, Chitosan and chitosan
chlorhydrate based various approaches for enhancement of
dissolution rate of carvedilol, DARU J. Pharm. Sci., 20 (2012) 93,
doi: 10.1186/2008-2231-20-93.
- M.A. Basturk, Heat applied chitosan treatment on hardwood
chips to improve physical and mechanical properties of particle
board, Bio Resources, 7 (2012) 4858–4866.
- Q. Peng, M. Liu, J. Zheng, C. Zhou, Adsorption of dyes in
aqueous solutions by chitosan–halloysite nanotubes composite
hydrogel beads, Microporous Mesoporous Mater., 201 (2015)
190–201.
- K.F.B. Hossain, M.T. Sikder, M.M. Ahman, M.K. Uddin,
M. Kurasaki, Investigation of chromium removal efficacy
from tannery effluent by synthesized chitosan from crab shell,
Arabian J. Sci. Eng., 42 (2017) 1569–1577.
- M. Rinaudo, Chitin and chitosan: properties and applications,
Progr. Polym. Sci., 31 (2006) 603–632.
- H. Wu, X. Li, M. Nie, B. Li, Z. Jiang, Integral PVA-PES composite
membranes by surface segregation method for pervaporation
dehydration of ethanol, Chin. J. Chem. Eng., 19 (2011) 855–862.
- T. Uragami, T. Doi, T. Miyata, Chapter 18 – Pervaporation Properties
of Surface-Modified
Poly[(1-trimethylsilyl-1-propyne]
Membranes, I. Pinnau, B.D. Freeman, Eds., Membrane
Formation and Modification, American Chemical Society, 1999,
pp. 263–279.
- M. Kumar Purkait, R. Singh, P. Mondal, D. Haldar, Chapter
13 – Applications of Thermal Induced Membrane Separation
Processes, In: Thermal Induced Membrane Separation Processes,
Elsevier, 2020, pp. 251–267.
- M.M. Beppu, R.S. Vieira, C.G. Aimoli, C.C. Santana, Crosslinking
of chitosan membranes using glutaraldehyde: effect on ion
permeability and water absorption, J. Membr. Sci., 301 (2007)
126–130.
- C. Wang, L. Yang, Y. He, H. Xiao, W. Lin, Microspherestructured
hydrogel crosslinked by polymerizable proteinbased
nanospheres, Polymer, 211 (2020) 123114, doi: 10.1016/j.
polymer.2020.123114.
- E.-H. Jang, S.P. Pack, I. Kim, S. Chung, A systematic study of
hexavalent chromium adsorption and removal from aqueous
environments using chemically functionalized amorphous
and mesoporous silica nanoparticles, Sci. Rep., 10 (2020) 5558,
doi: 10.1038/s41598-020-61505-1.
- E. Díez-Peña, I. Quijada-Garrido, J.M. Barrales-Rienda,
Analysis of the swelling dynamics of crosslinked
P(N-iPAAmco-MAA) copolymers and their homopolymers under acidic
medium. a kinetics interpretation of the overshooting effect,
Macromolecules, 36 (2003) 2475–2483.
- X. Guo, A. Liu, J. Lu, X. Niu, M. Jiang, Y. Ma, X. Liu, M. Li,
Adsorption mechanism of hexavalent chromium on biochar:
kinetic, thermodynamic, and characterization studies, ACS
Omega, 5 (2020) 27323–27331.
- K. Sakurai, T. Maegawa, T. Takahashi, Glass transition
temperature of chitosan and miscibility of chitosan/poly(Nvinyl
pyrrolidone) blends, Polymer, 41 (2000) 7051–7056.
- Y. Dong, Y. Ruan, H. Wang, Y. Zhao, D. Bi, Studies on glass
transition temperature of chitosan with four techniques,
J. Appl. Polym. Sci., 93 (2004) 1553–1558.
- J. Ostrowska-Czubenko, M. Gierszewska, M. Pieróg,
pH-responsive hydrogel membranes based on modified
chitosan: water transport and kinetics of swelling, J. Polym.
Res., 22 (2015) 153,
doi: 10.1007/s10965-015-0786-3.
- J. Berger, M. Reist, J.M. Mayer, O. Felt, N.A. Peppas,
R. Gurny, Structure and interactions in covalently and ionically
crosslinked chitosan hydrogels for biomedical applications,
Eur. J. Pharm. Biopharm., 57 (2004) 19–34.
- M. Gierszewska-Drużyńska, J. Ostrowska-Czubenko,
Structural and swelling properties of hydrogel membranes
based on chitosan crosslinked with glutaraldehyde and sodium
tripolyphosphate, Progr. Chem. Appl. Chitin Derivatives,
XX (2015) 43–53.
- M. Gierszewska, J. Ostrowska-Czubenko, Equilibrium swelling
study of crosslinked chitosan membranes in water, buffer and
salt solutions, Progr. Chem. Appl. Chitin Derivatives, XXI (2016)
55,
doi: 10.15259/PCACD.21.05.
- A. Bibi, S.-ur Rehman, R. Faiz, T. Akhtar, M. Nawaz, S. Bibi,
Effect of surfactants on swelling capacity and kinetics of
alginate-chitosan/CNTs hydrogel, Mater. Res. Express, 6 (2019)
085065.
- E. Serpil, Comparison of chitosan-based biocomposites for
remediation of water with Cr(VI) ions, Iran. J. Chem. Chem.
Eng., 39 (2020) 245–251.
- T. Altun, H. Ecevit, Cr(VI) removal using Fe2O3-chitosan-cherry
kernel shell pyrolytic charcoal composite beads, Environ. Eng.
Res., 25 (2020) 426–438.
- R. Dongre, Adsorption of hexavalent chromium by graphite–
chitosan binary composite, Bull. Mater. Sci., 39 (2016) 865–874.
- T. Altun, Preparation and application of glutaraldehyde
crosslinked chitosan coated bentonite clay capsules:
chromium(VI) removal from aqueous solution, J. Chil. Chem.
Soc., 65 (2020) 4790–4797.
- H. Moussout, H. Ahlafi, M. Aazza, C. El Akili, Performances of
local chitosan and its nanocomposite 5%bentonite/chitosan in
the removal of chromium ions (Cr(VI)) from wastewater, Int. J.
Biol. Macromol., 108 (2018) 1063–1073.
- T. Altun, H. Ecevit, Y. Kar, Ç. Birsen, Adsorption of Cr(VI)
onto crosslinked chitosan-almond shell biochars: equilibrium,
kinetic, and thermodynamic studies, J. Anal. Sci. Technol.,
12 (2021),
doi: 10.1186/s40543-021-00288-0.
- N. Nordine, Z. El Bahri, H. Sehil, R.I. Fertout, Z. Rais,
Z. Bengharez, Lead removal kinetics from synthetic effluents
using Algerian pine, beech and fir sawdust’s: optimization
and adsorption mechanism, Appl. Water Sci., 6 (2016) 349–358.
- K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption
isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- M.N.M. Ismael, A. El Nemr, E.S.H. El Ashry, H. Abdel Hamid,
Removal of hexavalent chromium by cross-linking chitosan
and N,N’-methylene bis-acrylamide, Environ. Process., 7 (2020)
911–930.