References

  1. H.K. Hakki, P. Shekari, A. Najafidoust, N. Dezhvan, M. Seddighi Rad, Influence of calcination temperature and operational parameters on Fe-ZSM-5 catalyst performance in sonocatalytic degradation of phenol from wastewater, J. Water Environ. Nanotechnol., 6 (2021) 150–163.
  2. Y. Ghaffari, N.K. Gupta, J. Bae, K. Soo Kim, Heterogeneous catalytic performance and stability of iron-loaded ZSM-5, zeolite-A, and silica for phenol degradation: a microscopic and spectroscopic approach, J. Catal., 9 (2019) 859, doi: 10.3390/ catal9100859.
  3. E. Turhan, A.C. Gündoğan, The post-politics of the green economy in Turkey: re-claiming the future?, J. Polit. Ecol., 24 (2017) 277–295.
  4. D.E. Yerien, Dr. S. Barata‐Vallejo, Dr. Al. Postigo, Difluoromethylation reactions of organic compounds, Chemistry, 23 (2017) 14676–14701.
  5. F. Postberg, N. Khawaja, B.D. Abel, G. Choblet, R.C. Glein, S.G. Murthy, L.B. Henderson, H. Hsiang-Wen, S. Kempf, F. Klenner, G. Moragas-Klostermeyer, B. Magee, L. Nölle, M. Perry, R. Reviol, J. Schmidt, R. Srama, F. Stolz,
    G. Tobie, M. Trieloff, J. Hunter Waite, Macromolecular organic compounds from the depths of Enceladus, Nature, 558 (2018) 564–568.
  6. M.A. Kryslaine Santos, E.M. Albuquerque, G. Innocenti, E.P. Luiz Borges, C. Sievers, M.A. Fraga, The role of Brønsted and Water-Tolerant Lewis Acid sites in the cascade aqueousphase reaction of triose to lactic acid, ChemCatChem, 11 (2019) 1–11.
  7. I. Ambat, V. Srivastava, M. Sillanpää, Recent advancement in biodiesel production methodologies using various feedstock: a review, Renewable Sustainable Energy Rev., 90 (2018) 356–369.
  8. M. Ravi, V.L. Sushkevich, A.J. Knorpp, M.A. Newton, D. Palagin, A.B. Pinar, M. Ranocchiari, J.A. Bokhoven, Misconceptions and challenges in methane-to-methanol over transition-metalexchanged zeolites, Nat. Catal., 2 (2019) 485–494.
  9. H. Tsurugi, K. Mashima, Salt-free reduction of transition metal complexes by bis(trimethylsilyl)cyclohexadiene, -dihydropyrazine, and -4,4′-bipyridinylidene derivatives, Chem. Res., 52 (2019) 769–779.
  10. A. Bavykina, N. Kolobov, I. Son Khan, J.A. Bau, A. Ramirez, J. Gascon, Metal–organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives, Chem. Rev., 120 (2020) 8468–8535.
  11. X. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts, Nat. Catal., 1 (2018) 385–397.
  12. C. Xie, D. Yan, H. Li, Sh. Du, W. Chen, Y. Wang, Y. Zou, Ru. Chen, S. Wang, Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization, ACS Catal., 10 (2020) 11082–11098.
  13. F. Gramigni, U. Iacobone, N.D. Nasello, T. Selleri, N. Usberti, I. Nova, Review of hydrocarbon poisoning and deactivation effects on Cu-zeolite, Fe-zeolite, and vanadium-based selective catalytic reduction catalysts for NOx removal from lean exhausts, Ind. Eng. Chem. Res., 60 (2021) 6403–6420.
  14. B. Liu, J. Huang, J. Yan, R. Luo, Tailoring the catalytic properties of alkylation using Cu- and Fe-containing mesoporous MEL zeolites, New J. Chem., 45 (2021) 8639–8646.
  15. Y. Yue, L. Gu, Y. Zhou, H. Liu, P. Yuan, H. Zhu, Z. Bai, X. Bao, Template-free synthesis and catalytic applications of microporous and hierarchical ZSM-5 zeolites from natural aluminosilicate minerals, Ind. Eng. Chem. Res., 56 (2017) 10069–10077.
  16. C. Shang, Z. Wu, W. Duo Wu, X. Dong Chen, Chemical crosslinking assembly of ZSM-5 nanozeolites into uniform and hierarchically porous microparticles for high-performance acid catalysis, ACS Appl. Mater. Interfaces, 11 (2019) 16693–16703.
  17. K. Fajerwerg, J.N. Foussard, A. Perrard, H. Debellefontaine, Wet oxidation of phenol by hedrogene peroxide: the key role of pH on the catalytic behavior of Fe-ZSM-5, Water Sci. Technol., 35 (1997) 103–110.
  18. M.V. Karolina, W. Ozren, M. Karmen, G. Teresa, K. Andrea, Z. Stanka, Phenol oxidation with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts, Pol. J. Chem. Technol., 13 (2011) 28–36.
  19. A. Aziz, H. Park, S. Kim, K.S. Kim, Phenol and ammonium removal by using Fe-ZSM-5 synthesized by ammonium citrate iron source, Int. J. Environ. Sci. Technol., 19 (2016) 2805–2816.
  20. W.C. Yoo, X. Zhang, M. Tsapatsis, A. Stein, Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes, Microporous Mesoporous Mater., 149 (2012) 147–157.
  21. G. Zhou, L. Li, Y. Yu, X. Li, Y. Wang, W. Wang, S. Komarneni, Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene, Appl. Catal., A, 487 (2014) 45–53.
  22. S. Sartipi, K. Parashar, M.J. Valero-Romero, V.P. Santos, B. van der Linden, M. Makkee, F. Kapteijn, J. Gascon, Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasolinerange hydrocarbons from syngas: advantages, limitations, and mechanistic insight, J. Catal., 305 (2013) 179–190.
  23. A. Soualah, M. Berkani, M. Chater, Synthesis and characterization of ZSM-5 type zeolites, C.R. Chim., 7 (2004) 713–720.
  24. W.C. Yoo, X. Zhang, M. Tsapatsis, A. Stein, Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes, Microporous Mesoporous Mater., 149 (2012) 147–157.
  25. H.Y. Chen, L. Chen, J. Lin, K.L. Tan, J. Li, Copper sites in copperexchanged ZSM-5 for CO activation and methanol synthesis: XPS and FTIR studies, J. Inorg. Chem., 36 (1997) 1417–1423.
  26. O.P. Farsana, P. Kumari, P. Aneesh, Effect of copper on textural and acidic properties of hierarchical nanocrystalline ZSM-5, J. Chem. Eng., 15 (2020) 2547, doi: 10.1002/apj.2547.
  27. E.M. Flanigen, H. Khatami, H.A. Szymanski, Infrared structural studies of zeolite frameworks, Adv. Chem. Ser., 101 (1971) 201–229.
  28. F.J. Rivas, S.T. Kolaczkowski, F.J. Beltran, D.B. McLurgh, Hydrogen peroxide promoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalysts, J. Chem. Technol. Biotechnol., 74 (1999) 390–398.
  29. F.J. Rivas, S.T. Kolaczkowski, F.J. Beltran, D.B. McLurgh, Development of a model for the wet air oxidation of phenol based on a free radical mechanism, Chem. Eng. Sci., 53 (1998) 2575–2586.
  30. S. Jiang, H. Zhang, Y. Yan, X. Zhang, Preparation and characterization of porous Fe-Cu mixed oxides modified ZSM-5 coating/PSSF for continuous degradation of phenol wastewater, Microporous Mesoporous Mater., 240 (2017) 108–116.
  31. A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, J.E. Sueiras, Studies in Surface Science and Catalysis, 2000.
  32. Y. Wu, H. Zhang, Y. Yan, Effect of copper ion-exchange on catalytic wet peroxide oxidation of phenol over ZSM-5 membrane, J. Environ. Manage., 270 (2020) 110907, doi: 10.1016/j.jenvman.2020.110907.
  33. Y. Yan, S. Jiang, H. Zhang, Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor, Sep. Purif. Technol., 133 (2014) 365–374.
  34. A. Alejandre, F. Medina, P. Salagre, A. Fabregat, J.E. Sueiras, Characterization and activity of copper and nickel catalysts for the oxidation of phenol aqueous solutions, Appl. Catal., B, 18 (1998) 307–315.
  35. A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, J.E. Sueiras, Preparation and activity of copper, nickel and copper-nickel-Al mixed oxides via hydrotalcite-like precursors for the oxidation of phenol aqueous solutions, J. Stud. Surf. Sci. Catal., 130 (2000) 1763–1768.