References
- H.K. Hakki, P. Shekari, A. Najafidoust, N. Dezhvan, M. Seddighi
Rad, Influence of calcination temperature and operational
parameters on Fe-ZSM-5 catalyst performance in sonocatalytic
degradation of phenol from wastewater, J. Water Environ.
Nanotechnol., 6 (2021) 150–163.
- Y. Ghaffari, N.K. Gupta, J. Bae, K. Soo Kim, Heterogeneous
catalytic performance and stability of iron-loaded ZSM-5,
zeolite-A, and silica for phenol degradation: a microscopic and
spectroscopic approach, J. Catal., 9 (2019) 859, doi: 10.3390/
catal9100859.
- E. Turhan, A.C. Gündoğan, The post-politics of the green
economy in Turkey: re-claiming the future?, J. Polit. Ecol.,
24 (2017) 277–295.
- D.E. Yerien, Dr. S. Barata‐Vallejo, Dr. Al. Postigo,
Difluoromethylation reactions of organic compounds,
Chemistry, 23 (2017) 14676–14701.
- F. Postberg, N. Khawaja, B.D. Abel, G. Choblet, R.C. Glein,
S.G. Murthy, L.B. Henderson, H. Hsiang-Wen, S. Kempf,
F. Klenner, G. Moragas-Klostermeyer, B. Magee, L. Nölle,
M. Perry, R. Reviol, J. Schmidt, R. Srama, F. Stolz,
G. Tobie, M. Trieloff, J. Hunter Waite, Macromolecular organic
compounds from the depths of Enceladus, Nature, 558 (2018)
564–568.
- M.A. Kryslaine Santos, E.M. Albuquerque, G. Innocenti,
E.P. Luiz Borges, C. Sievers, M.A. Fraga, The role of Brønsted
and Water-Tolerant Lewis Acid sites in the cascade aqueousphase
reaction of triose to lactic acid, ChemCatChem, 11 (2019)
1–11.
- I. Ambat, V. Srivastava, M. Sillanpää, Recent advancement in
biodiesel production methodologies using various feedstock:
a review, Renewable Sustainable Energy Rev., 90 (2018)
356–369.
- M. Ravi, V.L. Sushkevich, A.J. Knorpp, M.A. Newton, D. Palagin,
A.B. Pinar, M. Ranocchiari, J.A. Bokhoven, Misconceptions
and challenges in methane-to-methanol over transition-metalexchanged
zeolites, Nat. Catal., 2 (2019) 485–494.
- H. Tsurugi, K. Mashima, Salt-free reduction of transition
metal complexes by bis(trimethylsilyl)cyclohexadiene,
-dihydropyrazine, and -4,4′-bipyridinylidene derivatives,
Chem. Res., 52 (2019) 769–779.
- A. Bavykina, N. Kolobov, I. Son Khan, J.A. Bau, A. Ramirez,
J. Gascon, Metal–organic frameworks in heterogeneous
catalysis: recent progress, new trends, and future perspectives,
Chem. Rev., 120 (2020) 8468–8535.
- X. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Bridging
homogeneous and heterogeneous catalysis by heterogeneous
single-metal-site catalysts, Nat. Catal., 1 (2018) 385–397.
- C. Xie, D. Yan, H. Li, Sh. Du, W. Chen, Y. Wang, Y. Zou, Ru.
Chen, S. Wang, Defect chemistry in heterogeneous catalysis:
recognition, understanding, and utilization, ACS Catal.,
10 (2020) 11082–11098.
- F. Gramigni, U. Iacobone, N.D. Nasello, T. Selleri, N. Usberti,
I. Nova, Review of hydrocarbon poisoning and deactivation
effects on Cu-zeolite, Fe-zeolite, and vanadium-based selective
catalytic reduction catalysts for NOx removal from lean
exhausts, Ind. Eng. Chem. Res., 60 (2021) 6403–6420.
- B. Liu, J. Huang, J. Yan, R. Luo, Tailoring the catalytic properties
of alkylation using Cu- and Fe-containing mesoporous MEL
zeolites, New J. Chem., 45 (2021) 8639–8646.
- Y. Yue, L. Gu, Y. Zhou, H. Liu, P. Yuan, H. Zhu, Z. Bai,
X. Bao, Template-free synthesis and catalytic applications of
microporous and hierarchical ZSM-5 zeolites from natural
aluminosilicate minerals, Ind. Eng. Chem. Res., 56 (2017)
10069–10077.
- C. Shang, Z. Wu, W. Duo Wu, X. Dong Chen, Chemical
crosslinking assembly of ZSM-5 nanozeolites into uniform
and hierarchically porous microparticles for high-performance
acid catalysis, ACS Appl. Mater. Interfaces, 11 (2019)
16693–16703.
- K. Fajerwerg, J.N. Foussard, A. Perrard, H. Debellefontaine,
Wet oxidation of phenol by hedrogene peroxide: the key role of
pH on the catalytic behavior of Fe-ZSM-5, Water Sci. Technol.,
35 (1997) 103–110.
- M.V. Karolina, W. Ozren, M. Karmen, G. Teresa, K. Andrea,
Z. Stanka, Phenol oxidation with hydrogen peroxide using
Cu/ZSM5 and Cu/Y5 catalysts, Pol. J. Chem. Technol., 13 (2011)
28–36.
- A. Aziz, H. Park, S. Kim, K.S. Kim, Phenol and ammonium
removal by using Fe-ZSM-5 synthesized by ammonium citrate
iron source, Int. J. Environ. Sci. Technol., 19 (2016) 2805–2816.
- W.C. Yoo, X. Zhang, M. Tsapatsis, A. Stein, Synthesis of mesoporous
ZSM-5 zeolites through desilication and re-assembly
processes, Microporous Mesoporous Mater., 149 (2012) 147–157.
- G. Zhou, L. Li, Y. Yu, X. Li, Y. Wang, W. Wang, S. Komarneni,
Optimizing the distribution of aromatic products from catalytic
fast pyrolysis of cellulose by ZSM-5 modification with boron
and co-feeding of low-density polyethylene, Appl. Catal., A,
487 (2014) 45–53.
- S. Sartipi, K. Parashar, M.J. Valero-Romero, V.P. Santos, B. van
der Linden, M. Makkee, F. Kapteijn, J. Gascon, Hierarchical
H-ZSM-5-supported cobalt for the direct synthesis of gasolinerange
hydrocarbons from syngas: advantages, limitations, and
mechanistic insight, J. Catal., 305 (2013) 179–190.
- A. Soualah, M. Berkani, M. Chater, Synthesis and characterization
of ZSM-5 type zeolites, C.R. Chim., 7 (2004) 713–720.
- W.C. Yoo, X. Zhang, M. Tsapatsis, A. Stein, Synthesis of
mesoporous ZSM-5 zeolites through desilication and
re-assembly processes, Microporous Mesoporous Mater.,
149 (2012) 147–157.
- H.Y. Chen, L. Chen, J. Lin, K.L. Tan, J. Li, Copper sites in copperexchanged
ZSM-5 for CO activation and methanol synthesis:
XPS and FTIR studies, J. Inorg. Chem., 36 (1997) 1417–1423.
- O.P. Farsana, P. Kumari, P. Aneesh, Effect of copper on textural
and acidic properties of hierarchical nanocrystalline ZSM-5,
J. Chem. Eng., 15 (2020) 2547, doi: 10.1002/apj.2547.
- E.M. Flanigen, H. Khatami, H.A. Szymanski, Infrared structural
studies of zeolite frameworks, Adv. Chem. Ser., 101 (1971)
201–229.
- F.J. Rivas, S.T. Kolaczkowski, F.J. Beltran, D.B. McLurgh,
Hydrogen peroxide promoted wet air oxidation of phenol:
influence of operating conditions and homogeneous metal
catalysts, J. Chem. Technol. Biotechnol., 74 (1999) 390–398.
- F.J. Rivas, S.T. Kolaczkowski, F.J. Beltran, D.B. McLurgh,
Development of a model for the wet air oxidation of phenol
based on a free radical mechanism, Chem. Eng. Sci., 53 (1998)
2575–2586.
- S. Jiang, H. Zhang, Y. Yan, X. Zhang, Preparation and
characterization of porous Fe-Cu mixed oxides modified ZSM-5
coating/PSSF for continuous degradation of phenol wastewater,
Microporous Mesoporous Mater., 240 (2017) 108–116.
- A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, J.E. Sueiras,
Studies in Surface Science and Catalysis, 2000.
- Y. Wu, H. Zhang, Y. Yan, Effect of copper ion-exchange
on catalytic wet peroxide oxidation of phenol over ZSM-5
membrane, J. Environ. Manage., 270 (2020) 110907,
doi: 10.1016/j.jenvman.2020.110907.
- Y. Yan, S. Jiang, H. Zhang, Efficient catalytic wet peroxide
oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed
reactor, Sep. Purif. Technol., 133 (2014) 365–374.
- A. Alejandre, F. Medina, P. Salagre, A. Fabregat, J.E. Sueiras,
Characterization and activity of copper and nickel catalysts
for the oxidation of phenol aqueous solutions, Appl. Catal., B,
18 (1998) 307–315.
- A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, J.E. Sueiras,
Preparation and activity of copper, nickel and copper-nickel-Al
mixed oxides via hydrotalcite-like precursors for the oxidation
of phenol aqueous solutions, J. Stud. Surf. Sci. Catal., 130 (2000)
1763–1768.