References

  1. A. Komesu, J.A.R. de Oliveira, L.H. da S. Martins, M.R. Wolf Maciel, R. Maciel Filho, Lactic acid production to purification: a review, BioResources, 12 (2017) 4364–4383.
  2. E. Abedi, S.M.B. Hashemi, Lactic acid production – producing microorganisms and substrates sources-state of art, Heliyon, 6 (2020) e04974, doi: 10.1016/j.heliyon.2020.e04974.
  3. Y. Wang, W. Cao, J. Luo, B. Qi, Y. Wan, One step open fermentation for lactic acid production from inedible starchy biomass by thermophilic Bacillus coagulans IPE22, Bioresour. Technol., 272 (2019) 398–406.
  4. H.-T.V. Lin, M.-Y. Huang, T.-Y. Kao, W.-J. Lu, H.-J. Lin, C.-L. Pan, Production of lactic acid from seaweed hydrolysates via lactic acid bacteria fermentation, Fermentation, 6 (2020) 37, doi:10.3390/fermentation6010037.
  5. J. Romo-Buchelly, M. Rodríguez-Torres, F. Orozco-Sánchez, Biotechnological valorization of agro industrial and household wastes for lactic acid production, Rev. Colomb. Biotecnol., 21 (2019) 113–127.
  6. K. Ayadi, M. Meziane, M.N. Bouziane, D. Rouam, K. El-Miloudi, Olive mill wastewater for bioethanol production using immobilized cells, Časopis Kem. u Ind., 71 (2022) 21–28.
  7. M. Mouncif, S. Tamoh, M. Faid, A. Achkari-Begdouri, A study of chemical and microbiological characteristics of olive mill waste water in Morocco, Grasas y Aceites, 44 (1993) 335–338.
  8. M.A. Abdel-Rahman, K. Sonomoto, Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid, J. Biotechnol., 236 (2016) 176–192.
  9. J. Rodier, B. Legube, N. Merlet, L’analyse de l’eau, 9th ed., Dunod, Paris, 2009.
  10. R.M. Lamuela-Raventós, Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity, Meas. Antioxid. Act. Capacit. Recent Trends Appl., (2017) 107–115, doi:10.1002/9781119135388.ch6.
  11. W. Horwitz, Microorganisms in foods. 2. Sampling for microbiological analysis: principles and specific applications, J. AOAC Int., 58 (1975) 1308, doi: 10.1093/jaoac/58.6.1308a.
  12. K.N. Islam, T. Akbar, F. Akther, N.N. Islam, Characterization and confirmation of Lactobacillus spp. from selective regional yoghurts for probiotic and interference with pathogenic bacterial growth, Asian J. Biol. Sci., 9 (2016) 1–9, doi: 10.3923/ ajbs.2016.1.9.
  13. N. Talib, N.E. Mohamad, S.K. Yeap, Y. Hussin, M.N.M. Aziz, M.J. Masarudin, S.A. Sharifuddin, Y.W. Hui, C.L. Ho, N.B. Alitheen, Isolation and characterization of Lactobacillus spp. from Kefir Samples in Malaysia, Molecules, 24 (2019) 2606, doi: 10.3390/molecules24142606.
  14. J.-P. Guiraud, Microbiologie Alimentaire, Dunod, 2012.
  15. E.M. Brolazo, D.S. Leite, M.R. Tiba, M. Villarroel, C. Marconi, J.A. Simoes, Correlation between API 50 CH and multiplex polymerase chain reaction for the identification of vaginal Lactobacilli in isolates, Braz. J. Microbiol., 42 (2011) 225, doi: 10.1590/S1517-83822011000100028.
  16. M. Meziane, Production en continu de l’acide lactique et du diacétyle par Lactococcus lactis ssp immobilisée sur pouzzolane dans un bioréacteur à lit fixe, Hassiba Benbouali University of Chlef, 2008.
  17. M. Meziane, D.B. Abdelkader, H. El Hameur, Lactic Acid Fermentation of a Diluted Molasses Medium by Two Strains of Lactococcus lactis ssp. Immobilized on Pouzzolane and Bone Bovine, Antimicrobial Molecules from Algerian Fermented Foods, Conference: ISITES, 7–9 Juin, Sakarya, Turkey, 2013, pp. 774–782.
  18. M. Meziane, A. Dilmi Bouras, H. El Hameur, S. Boukrabouza, S. Bensehaila, Lactic acid and hydrogen peroxide production by free and immobilization cells of two Lactococcus lactis subsp. lactis in a sugar molasses medium, African J. Biotechnol., 10 (2011) 16953–16962.
  19. I. Chakravarty, S. Kundu, Improved production of Daptomycin in an airlift bioreactor by morphologically modified and immobilized cells of Streptomyces roseosporus, AMB Express, 6 (2016) 101, doi:10.1186/s13568-016-0274-0.
  20. A. Demirci, A.L. Pometto, K.E. Johnson, Lactic acid production in a mixed-culture biofilm reactor, Appl. Environ. Microbiol., 59 (1993) 203–207.
  21. I.-K. Yoo, H.-N. Chang, E.-G. Lee, Y.-K. Chang, S.-H. Moon, Effect of pH on the production of lactic acid and secondary products in batch cultures of Lactobacillus casei, J. Microbiol. Biotechnol., 6 (1996) 482–486.
  22. P. Álvarez-Martín, A.B. Flórez, A. Hernández-Barranco, B. Mayo, Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation, Food Control, 19 (2008) 62–70.
  23. A. Mekki, A. Aloui, Z. Guergueb, M. Braham, Agronomic valorization of olive mill wastewaters: effects on medicago sativa growth and soil characteristics, Clean – Soil Air Water, 46 (2018) 1800100, doi:10.1002/clen.201800100.
  24. Z. Majbar, K. Lahlou, M. Ben Abbou, E. Ammar, A. Triki, W. Abid, M. Nawdali, H. Bouka, M. Taleb, M. El Haji,
    Z. Rais, Co-composting of olive mill waste and wine-processing waste: an application of compost as soil amendment, J. Chem., 2018 (2018), doi: 10.1155/2018/7918583.
  25. S. Ntougias, F. Gaitis, P. Katsaris, S. Skoulika, N. Iliopoulos, G.I. Zervakis, The effects of olives harvest period and production year on olive mill wastewater properties – evaluation of Pleurotus strains as bioindicators of the effluent’s toxicity, Chemosphere, 92 (2013) 399–405.
  26. F. Elayadi, M. Achak, N. Beniich, M. Belaqziz, C. El Adlouni, Factorial design for optimizing and modeling the removal of organic pollutants from olive mill wastewater using a novel low-cost bioadsorbent, Water, Air Soil Pollut., 231 (2020) 351, doi: 10.1007/s11270-020-04695-8.
  27. R. Fragoso, A.C. Henriques, J. Gominho, J.M. Ochando-Pulido, E. Duarte, Integrated Management of Sewage Sludge and Olive Oil Production Chain Waste: Improving Conversion Process into Biomethane, S.N., G.A.,
    C. M.d.G., H.P., Eds., ETA-Florence Renewable Energies, LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal, 2019, pp. 983–986.
  28. F. Comino, V. Aranda, A. Domínguez-Vidal, M.J. Ayora-Cañada, Thermal destruction of organic waste hydrophobicity for agricultural soils application, J. Environ. Manage., 202 (2017) 94–105.
  29. Z. Rais, M. El Haji, M. Benabbou, Z. Majbar, K. Lahlou, M. Taleb, Y. Zaytouni, R. Rheribi, H. Bouka, M. Nawdali, Margines: traitement, valorisation dans la germination des graines de tomate et dans la filière de compostage, Rev. des Sci. l’Eau., 30 (2017) 57–62.
  30. D. Dhanasekaran, N. Thajuddin, A. Panneerselvam, Herbicidal agents from actinomycetes against selected crop plants and weeds, Nat. Prod. Res., 24 (2010) 521–529.
  31. A. Chowdhury, Md. Nur Hossain, N.J. Mostazir, Md Fakruddin, Md. Morsaline Billah, M.M. Ahmed, Screening of Lactobacillus spp. from buffalo yoghurt for probiotic and antibacterial activity, J. Bacteriol. Parasitol., 3 (2012) 1000156, doi: 10.4172/2155-9597.1000156.
  32. F. Bovo, L.T. Franco, R.E. Rosim, C.A.F. de Oliveira, Ability of a Lactobacillus rhamnosus strain cultured in milk whey based medium to bind aflatoxin B1, Food Sci. Technol., 34 (2014) 566–570.
  33. M.P. Bernardo, L.F. Coelho, D.C. Sass, J. Contiero, l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste, Braz. J. Microbiol., 47 (2016) 640–646.
  34. J. Monod, The growth of bacterial cultures, Annu. Rev. Microbiol., 3 (1949) 371–394.
  35. F. Jacob, J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol., 3 (1961) 318–356.
  36. A.L.C. Senedese, R. Maciel Filho, M.R.W. Maciel, L-Lactic acid production by Lactobacillus rhamnosus ATCC 10863, Sci. World J., 2015 (2015) 1–6.
  37. A. Srivastava, P.K. Roychoudhury, V. Sahai, Extractive lactic acid fermentation using ion-exchange resin, Biotechnol. Bioeng., 39 (1992) 607–613.